Course Syllabus

offered by Department of Materials Science and Engineering with effect from Semester A 2022/23

Part I Course Over	view
Course Title:	Polymers and Composites and Nano-applications
Course Code:	MSE6182
Course Duration:	One semester
Credit Units:	3
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	AP6182 Polymers and Composites-with an Introduction to Their Nano-applications (From the old curriculum)
Exclusive Courses: (Course Code and Title)	AP8182 Polymer and Composites-with an introduction to their Nano-applications (From the old curriculum)

Part II **Course Details**

1. **Abstract**

This course aims to develop basic research skills and introduce recent research developments in polymer science and engineering. This course covers basic knowledge on molecular structure of polymers, physical & chemical properties of polymers and their composites, micromechanic theories of polymer composites, as well as polymer composites with various functions. In addition, up-to-date applications of polymers and composites, as well as advanced nanocomposites including self-healing materials, thermally conductive materials and biomimetic composites will be discussed.

2. **Course Intended Learning Outcomes (CILOs)**

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting*	Discov	ery-eni	riched
		(if	curricu	ılum rel	ated
		applicable)	learnin	g outco	mes
			(please	e tick	where
			appropriate)		
			A1	A2	A3
1.	Describe the molecular nature, polymerization	25%	√	√	
	approaches and properties of polymers.				
2.	Apply experimental techniques to characterize the	25%	√	√	√
	behavior of polymers and composites.				
3.	The innovative design of polymer matrix composites	30%	√	√	√
	targeting on mechanical reinforcement and thermal				
	conductivity improvement etc.				
4.	Recognize various functional polymers & their	20%	√	√	√
	composites, including self-healing materials and				
	biomimetic composites etc.				
* If w	eighting is assigned to CILOs, they should add up to 100%.	100%			

^{*} If weighting is assigned to CILOs, they should add up to 100%.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs) 3.

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	A Brief Description				CILO No.					
	_	1	2	3	4		(if			
							applicable)			
Lecture	Explain key concepts; explain	√	√	√	√		2			
	chain structure of polymer									
	molecules, thermal properties of									
	polymers, processing methods,									
	performances, structures and									
	functions of polymer									
	composites.									
Tutorials	Checking students'	√	√	√	√		1			
	understanding to lecture									
	contents.									
Assignments	For assignment:	√	\checkmark	√			1			
	Each student is required to write									
	a report on a specific topic of									
	polymer or their composites or									
	carrying out online-simulation									
	based experiment on polymers									
	or their composites.									
Presentation	Present a topic related to science	√	\checkmark	√	√		3 hrs/wk for			
	and engineering of polymer or						1 or 1.5			
	polymer composites.						weeks			
							(Depending			
							on the size of			
							class)			
Middle term		√	√	√	√		1-2 hrs/wk			
examination							for 1 week			

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CII	CILO No.			We	ighting*	Remarks	
	1	2	3	4				
Continuous Assessment: 40%								
Assignments	√	√	√	√		10%	ó	
Presentation	√	√	√	√		10%	о́	
Middle Term Exam	√	√				20%	ó	
Examination: (duration: 2 hours)	√	√	√	√		60%	ó	
* The weightings should add up to 100%.					100	1%		

^{*} The weightings should add up to 100%.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Assignments	CAPABILITY for SELF-DIRECTED learning and problem solving	High	Moderate	Basic	Not even reaching marginal level
2. Presentation	ABILITY to explain a topic related to polymer or their composites, including their background, current problems and potential solutions.	High	Moderate	Basic	Not even reaching marginal level
3. Middle Term Exam	ABILITY to understand structure, properties, performances and functions of polymers.	High	Moderate	Basic	Not even reaching marginal level
4. Examination	ABILITY to understand structure, properties, performances and functions of polymers and composite materials as a whole.	High	Moderate	Basic	Not even reaching marginal level

Applicable to students admitted before Semester A 2022/23Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Assignments	CAPABILITY for SELF-DIRECTED learning and problem solving	High	Significant	Moderate	Basic	Not even reaching marginal level
2. Presentation	ABILITY to explain a topic related to polymer or their composites, including their background, current problems and potential solutions.	High	Significant	Moderate	Basic	Not even reaching marginal level
3. Middle Term Exam	ABILITY to understand structure, properties, performances and functions of polymers.	High	Significant	Moderate	Basic	Not even reaching marginal level
4. Examination	ABILITY to understand structure, properties, performances and functions of polymers and composite materials as a whole.	High	Significant	Moderate	Basic	Not even reaching marginal level

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

- Macromolecules.
- Copolymers.
- Physical characterization techniques in polymer science.
- Viscoelascitity and rubber elasticity.
- Micromechanics for polymer matrix composites.
- Natural and synthetic fibre reinforced polymer composites. Thermosetting and thermoplastic matrices. Fibre properties
- Fibre-polymer interface
- Roles of the interface. Types of interfaces. Characterization of interfaces.
- Behaviour of composite laminae. Density and fibre content. Iso-strain and iso-stress models. Halpin-Tsai equation. Longitudinal tensile strength prediction. Transverse tensile strength prediction. Compression behaviour. Hygrothermal behaviour.
- Mechanics of laminae
- Transformation of stress and strain. Constitutive equations for orthotropic lamina.
- Failure criteria
- Maximum stress theory. Maximum strain theory. Tsai-Wu failure criterion.
- Processing of polymer composites
- Hand lay-up. Vacuum bag and autoclaving. Pultrusion. Filament winding.
- Short fibre composites
- Load-transfer length and critical fibre length. Tensile, fracture and toughness properties.
- Metal matrix and ceramic matrix composites.
- Biomimetic polymer composites
- Polymer nanocomposites
- Carbon nanotube/graphene nanocomposites. Clay-polymer nanocomposites. Intercalation and exfoliation. Potential applications.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

N/A

2.2 Additional Readings
(Additional references for students to learn to expand their knowledge about the subject.)

1.	F L Matthews and R D Rawlings, "Composite materials: engineering and science", Chapman and Hall (1994). TA418.9.C6 M33 1999					
2.	B D Agarwal and L J Broutman, "Analysis and performance of fibre composites, 2nd ed", John Wiley and Sons (1990). TA418.9.C6 A34 2006					
3	L H Sperling, Introduction to Physical Polymer Science, 4th Edition, Wiley, 2006. (QD381.S635 2006)					
4	I M Ward and J Sweeney, An Introduction to The Mechanical Properties of Solid Polymers, 2nd Edition, Wiley, 2004. (TA455.P58 W36 2004)					
5	 Journal: H.D. Espinosa, J.E. Rim, F. Barthelat and M.J. Buehler, "Merger of structure and material in nacre and bone –Perspectives on de novo biomimetic materials", Progress in Materials Science 54 (2009) 1059–1100 Y. C. Yuan, T. Yin, M. Z. Rong, M. Q. Zhang, "Self healing in polymers and polymer composites. S. C. Tjong, "Structural and mechanical properties of polymer nanocomposites", Materials Science and Engineering R: Reports, 53 (2006) 73-197. 					