Course Syllabus # offered by Department of Materials Science and Engineering with effect from Semester A 2022/23 | Part I Course Over | view | |---|--| | Course Title: | Polymers and Composites and Nano-applications | | Course Code: | MSE6182 | | Course Duration: | One semester | | Credit Units: | 3 | | Level: | P6 | | Medium of Instruction: | English | | Medium of Assessment: | English | | Prerequisites:
(Course Code and
Title) | Nil | | Precursors:
(Course Code and
Title) | Nil | | Equivalent Courses:
(Course Code and
Title) | AP6182 Polymers and Composites-with an Introduction to Their Nano-applications (From the old curriculum) | | Exclusive Courses:
(Course Code and
Title) | AP8182 Polymer and Composites-with an introduction to their Nano-applications (From the old curriculum) | #### Part II **Course Details** #### 1. **Abstract** This course aims to develop basic research skills and introduce recent research developments in polymer science and engineering. This course covers basic knowledge on molecular structure of polymers, physical & chemical properties of polymers and their composites, micromechanic theories of polymer composites, as well as polymer composites with various functions. In addition, up-to-date applications of polymers and composites, as well as advanced nanocomposites including self-healing materials, thermally conductive materials and biomimetic composites will be discussed. #### 2. **Course Intended Learning Outcomes (CILOs)** (CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.) | No. | CILOs | Weighting* | Discov | ery-eni | riched | |--------|--|-------------|--------------|----------|----------| | | | (if | curricu | ılum rel | ated | | | | applicable) | learnin | g outco | mes | | | | | (please | e tick | where | | | | | appropriate) | | | | | | | A1 | A2 | A3 | | 1. | Describe the molecular nature, polymerization | 25% | √ | √ | | | | approaches and properties of polymers. | | | | | | 2. | Apply experimental techniques to characterize the | 25% | √ | √ | √ | | | behavior of polymers and composites. | | | | | | 3. | The innovative design of polymer matrix composites | 30% | √ | √ | √ | | | targeting on mechanical reinforcement and thermal | | | | | | | conductivity improvement etc. | | | | | | 4. | Recognize various functional polymers & their | 20% | √ | √ | √ | | | composites, including self-healing materials and | | | | | | | biomimetic composites etc. | | | | | | * If w | eighting is assigned to CILOs, they should add up to 100%. | 100% | | | | ^{*} If weighting is assigned to CILOs, they should add up to 100%. #### *A1*: Attitude Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers. #### A2: Ability Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems. ## A3: Accomplishments Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes. ### **Teaching and Learning Activities (TLAs) 3.** (TLAs designed to facilitate students' achievement of the CILOs.) | TLA | A Brief Description | | | | CILO No. | | | | | | |--------------|------------------------------------|----------|--------------|----------|----------|--|----------------|--|--|--| | | _ | 1 | 2 | 3 | 4 | | (if | | | | | | | | | | | | applicable) | | | | | Lecture | Explain key concepts; explain | √ | √ | √ | √ | | 2 | | | | | | chain structure of polymer | | | | | | | | | | | | molecules, thermal properties of | | | | | | | | | | | | polymers, processing methods, | | | | | | | | | | | | performances, structures and | | | | | | | | | | | | functions of polymer | | | | | | | | | | | | composites. | | | | | | | | | | | Tutorials | Checking students' | √ | √ | √ | √ | | 1 | | | | | | understanding to lecture | | | | | | | | | | | | contents. | | | | | | | | | | | Assignments | For assignment: | √ | \checkmark | √ | | | 1 | | | | | | Each student is required to write | | | | | | | | | | | | a report on a specific topic of | | | | | | | | | | | | polymer or their composites or | | | | | | | | | | | | carrying out online-simulation | | | | | | | | | | | | based experiment on polymers | | | | | | | | | | | | or their composites. | | | | | | | | | | | Presentation | Present a topic related to science | √ | \checkmark | √ | √ | | 3 hrs/wk for | | | | | | and engineering of polymer or | | | | | | 1 or 1.5 | | | | | | polymer composites. | | | | | | weeks | | | | | | | | | | | | (Depending | | | | | | | | | | | | on the size of | | | | | | | | | | | | class) | | | | | Middle term | | √ | √ | √ | √ | | 1-2 hrs/wk | | | | | examination | | | | | | | for 1 week | | | | ## 4. Assessment Tasks/Activities (ATs) (ATs are designed to assess how well the students achieve the CILOs.) | Assessment Tasks/Activities | CII | CILO No. | | | We | ighting* | Remarks | | |---|----------|----------|----------|---|-----|----------|---------|--| | | 1 | 2 | 3 | 4 | | | | | | Continuous Assessment: 40% | | | | | | | | | | Assignments | √ | √ | √ | √ | | 10% | ó | | | Presentation | √ | √ | √ | √ | | 10% | о́ | | | Middle Term Exam | √ | √ | | | | 20% | ó | | | Examination: (duration: 2 hours) | √ | √ | √ | √ | | 60% | ó | | | * The weightings should add up to 100%. | | | | | 100 | 1% | | | ^{*} The weightings should add up to 100%. ## 5. Assessment Rubrics (Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.) Applicable to students admitted in Semester A 2022/23 and thereafter | Assessment Task | Criterion | Excellent | Good | Marginal | Failure | |------------------------|--|-------------|----------|-------------|----------------------------------| | | | (A+, A, A-) | (B+, B) | (B-, C+, C) | (F) | | 1. Assignments | CAPABILITY for SELF-DIRECTED learning and problem solving | High | Moderate | Basic | Not even reaching marginal level | | 2. Presentation | ABILITY to explain a topic related to polymer or their composites, including their background, current problems and potential solutions. | High | Moderate | Basic | Not even reaching marginal level | | 3. Middle Term
Exam | ABILITY to understand structure, properties, performances and functions of polymers. | High | Moderate | Basic | Not even reaching marginal level | | 4. Examination | ABILITY to understand structure, properties, performances and functions of polymers and composite materials as a whole. | High | Moderate | Basic | Not even reaching marginal level | | Applicable to students admitted before Semester A 2022/23Assessment Task | Criterion | Excellent (A+, A, A-) | Good
(B+, B, B-) | Fair (C+, C, C-) | Marginal (D) | Failure
(F) | |--|--|-----------------------|---------------------|------------------|--------------|----------------------------------| | 1. Assignments | CAPABILITY for SELF-DIRECTED learning and problem solving | High | Significant | Moderate | Basic | Not even reaching marginal level | | 2. Presentation | ABILITY to explain a topic related to polymer or their composites, including their background, current problems and potential solutions. | High | Significant | Moderate | Basic | Not even reaching marginal level | | 3. Middle Term
Exam | ABILITY to understand structure, properties, performances and functions of polymers. | High | Significant | Moderate | Basic | Not even reaching marginal level | | 4. Examination | ABILITY to understand structure, properties, performances and functions of polymers and composite materials as a whole. | High | Significant | Moderate | Basic | Not even reaching marginal level | ## **Part III** Other Information (more details can be provided separately in the teaching plan) ## 1. Keyword Syllabus - Macromolecules. - Copolymers. - Physical characterization techniques in polymer science. - Viscoelascitity and rubber elasticity. - Micromechanics for polymer matrix composites. - Natural and synthetic fibre reinforced polymer composites. Thermosetting and thermoplastic matrices. Fibre properties - Fibre-polymer interface - Roles of the interface. Types of interfaces. Characterization of interfaces. - Behaviour of composite laminae. Density and fibre content. Iso-strain and iso-stress models. Halpin-Tsai equation. Longitudinal tensile strength prediction. Transverse tensile strength prediction. Compression behaviour. Hygrothermal behaviour. - Mechanics of laminae - Transformation of stress and strain. Constitutive equations for orthotropic lamina. - Failure criteria - Maximum stress theory. Maximum strain theory. Tsai-Wu failure criterion. - Processing of polymer composites - Hand lay-up. Vacuum bag and autoclaving. Pultrusion. Filament winding. - Short fibre composites - Load-transfer length and critical fibre length. Tensile, fracture and toughness properties. - Metal matrix and ceramic matrix composites. - Biomimetic polymer composites - Polymer nanocomposites - Carbon nanotube/graphene nanocomposites. Clay-polymer nanocomposites. Intercalation and exfoliation. Potential applications. ## 2. Reading List ## 2.1 Compulsory Readings (Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.) N/A 2.2 Additional Readings (Additional references for students to learn to expand their knowledge about the subject.) | 1. | F L Matthews and R D Rawlings, "Composite materials: engineering and science", Chapman and Hall (1994). TA418.9.C6 M33 1999 | | | | | | |----|---|--|--|--|--|--| | 2. | B D Agarwal and L J Broutman, "Analysis and performance of fibre composites, 2nd ed", John Wiley and Sons (1990). TA418.9.C6 A34 2006 | | | | | | | 3 | L H Sperling, Introduction to Physical Polymer Science, 4th Edition, Wiley, 2006. (QD381.S635 2006) | | | | | | | 4 | I M Ward and J Sweeney, An Introduction to The Mechanical Properties of Solid Polymers, 2nd Edition, Wiley, 2004. (TA455.P58 W36 2004) | | | | | | | 5 | Journal: H.D. Espinosa, J.E. Rim, F. Barthelat and M.J. Buehler, "Merger of structure and material in nacre and bone –Perspectives on de novo biomimetic materials", Progress in Materials Science 54 (2009) 1059–1100 Y. C. Yuan, T. Yin, M. Z. Rong, M. Q. Zhang, "Self healing in polymers and polymer composites. S. C. Tjong, "Structural and mechanical properties of polymer nanocomposites", Materials Science and Engineering R: Reports, 53 (2006) 73-197. | | | | | |