
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tcon20

International Journal of Control

ISSN: 0020-7179 (Print) 1366-5820 (Online) Journal homepage: https://www.tandfonline.com/loi/tcon20

Robust stabilization for a class of discrete-time
non-linear systems via output feedback: The
unified LMI approach

Daniel W. C. Ho & Guoping Lu

To cite this article: Daniel W. C. Ho & Guoping Lu (2003) Robust stabilization for a class of
discrete-time non-linear systems via output feedback: The unified LMI approach, International
Journal of Control, 76:2, 105-115, DOI: 10.1080/0020717031000067367

To link to this article:  https://doi.org/10.1080/0020717031000067367

Published online: 08 Nov 2010.

Submit your article to this journal 

Article views: 644

View related articles 

Citing articles: 55 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=tcon20
https://www.tandfonline.com/loi/tcon20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/0020717031000067367
https://doi.org/10.1080/0020717031000067367
https://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tcon20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/0020717031000067367
https://www.tandfonline.com/doi/mlt/10.1080/0020717031000067367
https://www.tandfonline.com/doi/citedby/10.1080/0020717031000067367#tabModule
https://www.tandfonline.com/doi/citedby/10.1080/0020717031000067367#tabModule


Robust stabilization for a class of discrete-time non-linear systems via output feedback: the unified

LMI approach

DANIEL W. C. HO{* and GUOPING LU{

This paper discusses a robust stabilization problem for a class of multi-input and multi-output (MIMO) discrete-time
non-linear systems with both state and control inputs containing non-linear perturbations. The problem is solved via
static output feedback and dynamic output feedback, respectively. A unified approach is used to cast the problem into a
convex optimization involving linear matrix inequalities (LMI), all the controllers can robustly stabilize the systems and
maximize the bound on the non-linear perturbations. This paper also extends the output feedback centralized design
approach to a class of discrete-time MIMO non-linear decentralized systems, both robust static and dynamic output
feedback controllers are obtained.

1. Introduction

Much attention has been paid to the quadratic
stabilization theory of discrete-time systems (see
Petersen and Hollot 1986, Yaz and Niu 1989, Gu
1994, Halicka and Rosinova 1994, Zeng 1995, Yuan et
al. 1996, Stipanovic and Siljak 2001). The problem of
robust quadratic stabilization is to find a feedback con-
troller such that the closed-loop systems are stable for
all admissible parameter perturbations, and the associ-
ated Lyapunov function is quadratic and deterministic.
The approach has been shown to be effective for dealing
with parameter uncertainty by Yuan et al. (1996),
Stipanovic and Siljak (2001). Based on strictly quasi-
convex optimization, robust quadratic stabilizing con-
trollers via linear static output feedback and state feed-
back are constructed for discrete-time linear systems
with uncertainty by Gu (1994). Under some additional
constraints on the variable of matrix inequality (see
Remarks 5 and 11), the robust stabilization for a class
of discrete-time non-linear systems is formulated into a
convex optimization via linear matrix inequalities (LMI)
developed by Stipanovic and Siljak (2001). In their
work, static state feedback law is designed to stabilize
the plant and maximize the bound on the non-linear
perturbation terms. The approach by Stipanovic and
Siljak (2001) is also extended to a class of interconnected
systems, a stabilizing feedback law is presented such that
the closed-loop systems are maximally robust with
respect to the size of the uncertain interconnected
terms. In their design, it requires a special structure of

matrix variable L (or Li) in order to ‘recover’ control
gain K (or Ki) from matrix inequality (also see
Remarks 5 and 11).

In this paper, a class of multi-input and multi-output
(MIMO) discrete-time systems are discussed, which con-
tains non-linear perturbations on both state and control
inputs. The systems in this paper are more general than
those systems discussed by Stipanovic and Siljak (2001)
where no control input perturbation is considered. The
objective of this paper is to present a unified approach to
design output feedback control design for the discrete-
time systems by means of convex optimization pro-
cedure, the output feedback control law can robustly
stabilize the overall systems and simultaneously maxi-
mize the bound on the non-linear perturbations. The
contributions of this paper are shown as follows:

(1) The static output feedback law is presented in
this paper. As a special case, static state feedback
law can be obtained. However, no special struc-
ture of matrix variable is required to obtain con-
trol gain K . Those controller designs in
Stipanovic and Siljak (2001) and Garcia et al.
(1994) are special cases of this work (see
Remarks 4 and 5).

(2) Based on the Luenberger observer design, a
dynamic output feedback law is presented in
this paper, and it can also be regarded as an
extention of the design by Stipanovic and Siljak
(2001).

(3) We generalize our method to MIMO intercon-
nected systems, both static output and dynamic
output decentralized controllers are designed.
The interconnections among subsystems consist
of two parts: one is the linear part and the other
is the non-linear perturbations for both state and
control inputs. The proposed model is more gen-
eral than the decentralized model discussed by
Stipanovic and Siljak (2001).
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(4) A unified structure of LMI is introduced to con-
struct robust stabilization controllers via various
feedback designs for a wide class of discrete-time
systems with either matched uncertainty or
unmatched uncertainty, respectively (see
Remarks 2 and 4).

2. Preliminaries

Consider the following unforced discrete-time non-
linear system

zðkþ 1Þ ¼ A0zðkÞ þ g½k; zðkÞ� ð1Þ
where zðkÞ is the system state and A0 is a constant
matrix with appropriate dimensions; g ¼ gðk; zÞ is a
known vector-valued non-linear function and satisfies
the following quadratic inequality for all ðk; zÞ.

g0ðk; zÞgðk; zÞ � �2z0G0Gz ð2Þ
where G is a constant matrix with appropriate dimen-
sion and � is a non-negative constant. Motivated by
Stipanovic and Siljak (2001) we introduce the following
definition.

Definition 1: System (1) is robustly stable with degree
� if the equilibrium z ¼ 0 is globally asymptotically
stable for all gðk; zðkÞÞ satisfying constraint (2).

The following lemma will be used for the proof of
Lemma 2.

Lemma 1—S-procedure lemma (Yakubovich 1977):
Let O0ðxÞ and O1ðxÞ be two arbitrary quadratic forms
over Rn, then O0ðxÞ < 0 for all x 2 Rn 
 f0g satisfying
O1ðxÞ � 0 if and only if there exist �  0 such that

O0ðxÞ 
 �O1ðxÞ < 0; 8x 2 Rn 
 f0g
For convenience and compactness, let

Lð�;Q;G1;G2Þ :¼

Q G0

1 G0
2

G1 I 
Q 0

G2 0 
�I

0
BB@

1
CCA ð3Þ

where � is a scalar, Q, G and G1 are matrices with appro-
priate dimensions and I is an identity matrix with an
appropriate dimension. Matrix inequality Lð�;Q;G1;
G2Þ < 0 is a unified LMI structure and the notations
in (3) will be used throughout this paper. The dimension
of (3) will be different according to the control designs of
state feedback, static output feedback and dynamic out-
put feedback, respectively.

The following result is fundamental and will be used
throughout this paper, which presents a sufficient con-
dition for robust stability of system (1) in the sense of
Definition 1. For convenience of discussion, let � ¼ �
2.

Lemma 2: Unforced system (1) is robustly stable with
degree � if there exists positive definite matrix Q such
that the following convex optimization problem is
solvable

minimize �

subject to L �;Q;A0Q;GQð Þ < 0

)
ð4Þ

Proof: If (4) has solution Q, let P ¼ Q
1, then it fol-
lows from the Schur complement lemma (Boyd et al.
1994) that (4) implies that I 
 P > 0 and


Pþ �2G0Gþ A0
0ðP
1 
 IÞ
1A0 < 0 ð5Þ

Noting

ðP
1 
 IÞ
1 ¼ Pþ PðI 
 PÞ
1P ð6Þ
then (5) is equivalent to


Pþ �2G0Gþ A0
0PA0 þ A0

0PðI 
 PÞ
1PA0 < 0 ð7Þ
Choose the Lyapunov function candidate as

Vk ¼ z0ðkÞPzðkÞ ð8Þ
then it follows from (7) that for any zðkÞ 6¼ 0

Vkþ1 
 Vk 
 g0g
 �2z0ðkÞG0GzðkÞ
� 	

¼ ½A0zðkÞ þ g�0P½A0zðkÞ þ g� 
 z0ðkÞPzðkÞ


½g0g
 �2z0ðkÞG0GzðkÞ�

¼ z0ðkÞ½
Pþ �2G0Gþ A0
0PA0 þ A0

0PðI 
 PÞ
1PA0�zðkÞ


½ðI 
 PÞ
1=2PA0zðkÞ 
 ðI 
 PÞ1=2g�0½ðI 
 PÞ
1=2PA0zðkÞ


ðI 
 PÞ1=2g� ð9Þ
From Lemma 1, we have that for any zðkÞ 6¼ 0, equation
(9) implies that

Vkþ1 
 Vk < 0 ð10Þ
which completes the proof. &

Remark 1: For completeness of the above proof in
(9) on parameter scaling, we can also show that

Vkþ1 
 Vk 
 � g0g
 �2z0ðkÞG0GzðkÞ
� 	

< 0

by replacing Vk ¼ �z0ðkÞPzðkÞ in (8), where � > 0

Remark 2: Lemma 2 will be used in the sequel. Com-
pared with Theorem 1 by Stipanovic and Siljak (2001),
Lemma 2 is more compact with a reduced dimension
of LMI, which is more effective for computation.

3. Static output feedback

Consider a class of MIMO discrete-time non-linear
system as follows
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xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ þ f ½k; xðkÞ; uðkÞ�

yðkÞ ¼ CxðkÞ

9=
; ð11Þ

where xðkÞ 2 Rn, uðkÞ 2 Rm and yðkÞ 2 Rp are the
system state, control input and output, respectively;
A 2 Rn�n, B 2 Rn�m and C 2 Rp�n are constant
matrices; without loss of generality, suppose that
rankðCÞ ¼ p; f ¼ f ðk; x; uÞ is known vector-valued
non-linear function and satisfies the following quadratic
inequality for all ðk; x; uÞ 2 Z0 � R

n � R
m, where

Z0 ¼ f0; 1; 2; . . .g

f 0ðk; x; uÞf ðk; x; uÞ � �2 x0F 0Fxþ u0H 0Hu
 �

ð12Þ

where F ; H are constant matrices with appropriate
dimensions and � is a non-negative constant.

Remark 3: We can replace (12) with the constraint

f 0ðk; x; uÞf ðk; x; uÞ � �2 x0F 0Fxþ 2x0F 0Huþ u0H 0Hu
 �

ð13Þ

It is easy to show from linear algebra that (13) is equiva-
lent to (12). For simplicity, we only make assumption
for f ðk; x; uÞ in the form of (12).

Remark 4: If f ½k; xðkÞ; uðkÞ� ¼ �AðkÞxðkÞ þ�BðkÞu
ðkÞ þ f0½k; xðkÞ; uðkÞ�, where the norm of �AðkÞ and
�BðkÞ are uniformly bounded by two constant scalars
or satisfy with matched (or unmatched) conditions,
and f0ðk; x; uÞ is global Lipschitz on x and u with
f0ðk; 0; 0Þ ¼ 0 for any k 2 Z0. Then this class of
Lipschitz system with uncertainty can be included in
system (11). The approach in this paper may include
analysis of a wider class of systems but S-procedure is
not straightforward. In addition, system (11) is more
general than the following systems: (i) the discrete-time
linear system with structure uncertainties discussed by
Garcia et al. (1994); (ii) the perturbed discrete-time
system with no control input perturbation considered
by Stipanovic and Siljak (2001).

In this section, we consider the following form of
linear static output feedback controller

uðkÞ ¼ KyðkÞ ð14Þ

where K 2 Rm�p is a constant matrix to be determined.
If there exists a controller in the form of (14) such

that the closed-loop systems (11) and (14) are robustly
stable with degree � in the sense of Definition 1, then we
say that system (11) can be robustly stabilizable with
degree � by means of controller (14).

The following theorem presents a way to construct
static output feedback law (14) in which sufficient con-
dition is presented by means of LMI.

Theorem 1: System (11) is robustly stabilizable with
degree � by means of static output feedback (14) if the
following optimization problem on matrices Q 2 Rn�n,
X 2 Rm�p and Z 2 Rp�p is solvable

minimize �

subject to L �;Q;AQþ BXC;
FQ

HXC

 ! !
< 0

CQ ¼ ZC

ð15Þ

Proof: The resulting closed-loop systems of (11) and
(14) are

xðkþ 1Þ ¼ ðAþ BKCÞxðkÞ þ f ½k; xðkÞ;KCxðkÞ� ð16Þ

where

f 0½k; xðkÞ;KCxðkÞ�f ½k; xðkÞ;KCxðkÞ� � �2x0ðkÞ

�
F

HKC

 !0 F

HKC

 !
xðkÞ ð17Þ

That is, system (16) is equivalent to (1) with constraint
(2) if

A0 ¼ Aþ BKC; G ¼
F

HKC

 !
ð18Þ

Noting that the full row rank of C and Q is a positive-
definite matrix from LMI (15), then matrix equation
CQ ¼ ZC implies

p  rankðZÞ  rankðZCÞ ¼ rankðCQÞ

 rank ðCQÞQ
1
� 	

¼ rankðCÞ ¼ p
ð19Þ

that is, Z is non-singular. If the gain of control law in
the form of (14) can be chosen as

K ¼ XZ
1 ð20Þ

then, in LMI (4

G1 :¼ A0Q ¼ ðAþ BKCÞQ ¼ AQþ BKCQ

¼ AQþ BKZC ¼ AQþ BXC;

G2 :¼ GQ ¼
F

HKC

 !
Q ¼

FQ

HXC

 ! ð21Þ

then for the closed-loop systems (16) with (20), the fol-
lowing LMI is equivalent to the LMI in (4)

L �;Q;AQþ BXC;
FQ

HXC

 ! !
< 0
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From Lemma 2, the closed-loop systems (16) are
robustly stable with degree �, which completes the
proof. &

As a direct application of Theorem 1, choosing
C ¼ I in Theorem 1, then matrix equation CQ ¼ ZC
holds automatically if Z ¼ Q, that is, the constraint
CQ ¼ ZC is equivalent to Z ¼ Q in this case.
Therefore we have the following result, which presents
a sufficient condition in the form of LMI under which
system can be robustly stabilized via static state feed-
back law.

Corollary 1: System (11) is robustly stabilizable with
degree � by means of static state feedback if the follow-
ing convex optimization problem on matrices Q 2 Rn�n

and X 2 Rm�n is solvable

minimize �

subject to L �;Q;AQþ BX ;
FQ
HX

� �� �
< 0

ð22Þ

In this case, a static state feedback law can be given as

uðkÞ ¼ KxðkÞ ¼ XQ
1xðkÞ ð23Þ

Remark 5: In order to ‘recover’ control gain K for
state feedback of single-input system, sti sti introduce
a special structure matrix variable L to guarantee the
resulting matrix inequality to be an LMI and then K
is obtained from L (see (19)–(21) in Stipanovic and Sil-
jak, 2001). Therefore Corollary 1 presents a more effi-
cient approach to ‘recover’ K explicitly in (23) via less
conservative LMI (22) (see also Example 1). In addi-
tion, Theorem 2 given by Stipanovic and Siljak (2001)
is a special case of Theorems 1 and 2. Furthermore,
the result in this section can be regarded as an exten-
tion of that by Garcia et al. (1994) and Gu (1994)
where state feedback and static output feedback are
obtained by means of Riccati equation approach and
quasiconvex optimization approach, respectively.

Remark 6: An assumption on ðA;BÞ controllable is
made by Stipanovic and Siljak (2001). However this
assumption is not introduced in this paper. It is due to
that if LMI (15) or (27) holds, it can guarantee the ro-
bust stability of the resulting closed-loop systems. In
fact, it can be observed that ðA;BÞ stabilizable can be
derived from the associated LMI.

Since the optimization problem (15) contains the
constraint of matrix equation CQ ¼ ZC, MATLAB
LMI Toolbox (Gahinet et al. 1995) is hard to solve
(15) directly. In order to convert the optimization prob-
lem into an LMI, we shall show that this constraint on Q
and Z can be transformed into an equivalent constraint

on Q, then the optimization problem (15) will be equiva-
lent to an LMI.

For convenience, we present the singular value
decomposition of C as

C ¼ U C0 0ð ÞV 0 ð24Þ
where U 2 Rp�p and V 2 Rn�n are unitary matrices and
C0 2 Rp�p is a diagonal matrix with positive diagonal
elements in decreasing order.

The following lemma presents an equivalent con-
dition on matrix equation CQ ¼ ZC.

Lemma 3: For a given C 2 Rp�n with rank ðCÞ ¼ p,
assume that Q 2 Rn�n is a symmetric matrix, then there
exists a matrix Z 2 Rp�p such that CQ ¼ ZC if and
only if

Q ¼ V
Q1 0

0 Q2

� �
V 0

where Q1 2 Rp�p, Q2 2 Rðn
pÞ�ðn
pÞ.

Proof: If p ¼ n, from the proof of Theorem 1, C is
non-singular, it is clear that the result is true for solva-
ble on Z. Without loss of generality, suppose p < n.
From CQ ¼ ZC and the singular value decomposition
of C, that is, C ¼ U C0 0ð ÞV 0, we have that matrix
equation CQ ¼ ZC is equivalent to U C0 0ð ÞV 0Q ¼
ZU C0 0ð ÞV 0. That is

UC0 0ð ÞV 0QV ¼ ZUC0 0ð Þ ð25Þ
Suppose

Q ¼ V
Q1 Q0

0

Q0 Q2

� �
V 0

where Q1 2 Rp�p, Q2 2 Rðn
pÞ�ðn
pÞ and Q0 2 Rðn
pÞ�p,
then (25) is equivalent to

UC0Q1 UC0Q0ð Þ ¼ ZUC0 0ð Þ ð26Þ
Matrix equation (26) is solvable on Z if and only if
UC0Q0 ¼ 0, that is, Q0 ¼ 0, which completes the
proof. &

From Theorem 1 and Lemma 3, we have the follow-
ing result.

Theorem 2: System (11) is robustly stabilizable with
degree � by static output feedback law if the following
convex optimization problem on matrices Q1 2 Rp�p,
Q2 2 Rðn
pÞ�ðn
pÞ, X 2 Rm�p is solvable

minimize �

subject to L �;V
Q1 0

0 Q2

 !
V 0;G1;G2

 !
< 0

9>>=
>>; ð27Þ

where
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G1 ¼ AV
Q1 0

0 Q2

 !
V 0 þ BXC;

G2 ¼
FV

Q1 0

0 Q2

 !
V 0

HXC

0
BB@

1
CCA

ð28Þ

In this case, a static output feedback controller of form
(14) can be chosen as

uðkÞ ¼ XUC0Q

1
1 C
1

0 U 0yðkÞ ð29Þ

Remark 7: In controller form (29), U and C0 are de-
termined by the singular value decomposition of C
(see (24)), X and Q1 are the solutions of LMI (27) and
(28).

Remark 8: The control gain (20) involves Z and is
not solvable by the existing LMI tools (Gahsinet et al.
(1995) since the optimization problem (15) is an LMI
with an additional matrix equality constraint. The rela-
tionship between Z and Q (from CQ ¼ ZC) imposes a
special structure on Q, which is equivalent to an expli-
cit form of

Q ¼ V
Q1 0

0 Q2

� �
V 0

as shown in Lemma 3. As a result, an explicit control
law (29), dependent only on LMI variables, is obtained
in Theorem 2.

4. Dynamic output feedback

In this section, we consider stabilization for system
(11) via the following Luenberger-like dynamic output
feedback controller

x̂xðkþ 1Þ ¼ Ax̂xðkÞ þ BuðkÞ þ LðyðkÞ 
 Cx̂xðkÞÞ

uðkÞ ¼ Kx̂xðkÞ

)
ð30Þ

where L 2 Rn�p, K 2 Rm�n are two constant matrices to
be determined.

Let the difference of xðkÞ and x̂xðkÞ be eðkÞ, that is,
eðkÞ ¼ xðkÞ 
 x̂xðkÞ, then the closed-loop systems of (11)
and (30) are in the form of (1) with

zðkÞ ¼
x̂xðkÞ
eðkÞ

� �
; A0 ¼

Aþ BK LC

0 A
 LC

� �
;

g ¼
0

f ½k; x̂xðkÞ þ eðkÞ;Kx̂xðkÞ�

� � ð31Þ

Theorem 3: System (11) is robustly stable with degree
� via dynamic output feedback in the form of (30) if
there exist matrices Q1;Q2 2 Rn�n, X 2 Rm�n,
Y 2 Rn�p and Z 2 Rp�p such that the following optimi-
zation problem is solvable

minimize �

subject to L �;Q;G1;G2ð Þ < 0

CQ2 ¼ ZC

9>>=
>>; ð32Þ

where

Q ¼
Q1 0

0 Q2

 !
; G1 ¼

AQ1 þ BX YC

0 AQ2 
 YC

 !

G2 ¼
FQ1 FQ2

HX 0

 !

ð33Þ
In this case, a dynamic output feedback controller can be
given by (30) with

L ¼ YZ
1; K ¼ XQ
1
1 ð34Þ

Proof: From (12), we have

g0g ¼ f 0½k; x̂xðkÞ þ eðkÞ;Kx̂xðkÞ�f ½k; x̂xðkÞ þ eðkÞ;Kx̂xðkÞ�

� �2 ½x̂xðkÞ þ eðkÞf �0F 0F x̂xðkÞ þ eðkÞ½ �

þ x̂x0ðkÞK 0H 0HKx̂xðkÞg

¼ �2z0ðkÞ
F F

HK 0

 !0
F F

HK 0

 !
zðkÞ

ð35Þ
That is, in (2)

G ¼
F F

HK 0

� �
ð36Þ

From (31)–(34) and (36), we have

A0Q ¼
Aþ BK LC

0 A
 LC

 !
Q1 0

0 Q2

 !

¼
AQ1 þ BKQ1 LCQ2

0 AQ2 
 LCQ2

 !

¼
AQ1 þ BKQ1 LZC

0 AQ2 
 LZC

 !

¼
AQ1 þ BX YC

0 AQ2 
 YC

 !

¼ G1

GQ ¼
F F

HK 0

 !
Q1 0

0 Q2

 !
¼

FQ1 FQ2

HK 0

 !

¼ G2

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
ð37Þ
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Then it follows from Lemma 2 that the resulting closed-
loop systems (11) and (30) with (34), that is, system (1)
with the parameters given in the form of (31) and (34),
are robustly stable, which completes the proof. &

Similar to Theorem 2, we have the following result
from Lemma 3.

Theorem 4: System (11) is robustly stable with degree
� via dynamic output feedback in the form of (30) if
there exist matrices Q1 2 Rn�n, Q21 2 Rp�p,
Q22 2 Rðn
pÞ�ðn
pÞ, X 2 Rm�n and Y 2 Rn�p such that
the following convex optimization problem is solvable.

minimize �

subject to L �;Q;G1;G2ð Þ < 0

)
ð38Þ

where

Q ¼
Q1 0

0 Q2

 !
; Q2 ¼ V

Q21 0

0 Q22

 !
V 0

G1 ¼
AQ1 þ BX YC

0 AQ2 
 YC

 !
;

G2 ¼
FQ1 FQ2

HX 0

 !

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð39Þ

In this case, a dynamic output feedback controller can be
given by (30) with

L ¼ YUC0Q

1
21 C


1
0 U 0; K ¼ XQ
1

1 ð40Þ

The outline of proof: It follows from (24) and
CQ2 ¼ ZC in (32) that U C0 0ð ÞV 0Q2 ¼ ZU C0 0ð ÞV 0,
that is, UC0 0ð ÞV 0Q2V ¼ ZUC0 0ð Þ. From (39), we
have that UC0Q21 ¼ ZUC0, that is,

Z ¼ UC0Q21C

1
0 U 0 ð41Þ

Therefore, (40) can be obtained by (32) and (41). &

Remark 9: Theorems 3 and 4 can be regarded as an
extention of Theorems 1 and 2, and can also be re-
garded as an extention of the results by Stipanovic
and Slijak (2001).

5. Decentralized control for interconnected discrete-

time systems

Consider a class of large-scale discrete-time systems
S composed of N interconnected subsystem Si. Each
subsystem Si is described as

xiðkþ 1Þ ¼
XN
j¼1

AijxjðkÞ þ BiuiðkÞ þ fi k; xðkÞ; uðkÞ½ �

yiðkÞ ¼ CixiðkÞ; i ¼ 1; 2; . . . ;N

9>>>=
>>>;
ð42Þ

where xiðkÞ 2 Rni , uiðkÞ 2 Rmi , and yiðkÞ 2 Rpi are
the sub-state, sub-control, and sub-output vectors,
respectively. Aij, Bi and Ci denote the system matrix,
input matrix and output matrix with appropriate
dimensions, respectively. x ¼ ðx01; x02; . . . ; x0N Þ

0 2 Rn,
u ¼ ðu01; u02; . . . ; u0N Þ

0 2 Rm, n ¼
PN

i¼1 ni, m ¼
PN

i¼1 mi,
p ¼

PN
i¼1 pi. Moreover, all non-linear interconnection

functions are assumed to satisfy the quadratic con-
straints for all ðk; xÞ 2 Z0 � R

n

f 0i ðk; x; uÞfiðk; x; uÞ � �2
i x0F 0

i Fixþ u0H 0
iHiu

 �
;

i ¼ 1; 2; . . . ;N;
ð43Þ

where Fi and Hi are constant matrices with appropriate
dimension, �i is non-negative constant. The overall
interconnected systems can be rewritten in a compact
form

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ þ f k; xðkÞ; uðkÞ½ �

yðkÞ ¼ CxðkÞ

9>>>=
>>>;

ð44Þ

where x 2 Rn is the state, u 2 Rm is the input of the
system, y ¼ ðy01; y02; . . . ; y0N Þ

0 2 Rp is the output and
A ¼ block Aij

 �
N�N

, B ¼ diagfB1;B2; . . . ;BN
g and C ¼

diagfC1;C2; . . . ;CN
g are constant matrices with appro-

priate dimensions. Without loss of generality, C is
assumed to be full rank. In (44), the interconnection
function f : Z0 � R

n ! R
n, f ¼ ðf 01; f 02; . . . ; f 0N Þ

0 is con-
strained for all ðk; x; uÞ 2 Z0 � R

n as

f 0ðk; x; uÞf ðk; x; uÞ �
XN
i¼1

�2
i x0F 0

i Fixþ u0H 0
iHiu

 �
ð45Þ

Before presenting the control design in this section, a
useful lemma can be obtained by Lemma 2. Consider
system (1) with the constraint

g0ðk; zÞgðk; zÞ � z0
XN
i¼1

�2
i G

0
iGi

 !
z ð46Þ

where Gi is constant matrix with appropriate dimension,
�i is non-negative constant, i ¼ 1; 2; . . . ;N.

For convenience of discussion, let �i ¼ �
2
i . Similar

to Lemma 2, we have the following useful lemma.

Lemma 4: System (1) with constraint (46) is robustly
stable if there exists positive definite matrix Q such that
the following convex optimization problem is solvable
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minimize �1 þ �2 þ � � � þ �
N

subject to LD G0;Q;G1;G2ð Þ < 0

)
ð47Þ

where G1 ¼ A0Q, G2 ¼ GQ ¼ G0
1 G0

2 . . . G0
N

 �0
Q,

G0 ¼ diagf�1I1; . . . ; �NINg, I1; . . . ; IN are identity
matrices with appropriate dimensions, and

LDðG0;Q;G1;G2Þ :¼

Q G0

1 G0
2

G1 I 
Q 0

G2 0 
G0

0
BB@

1
CCA ð48Þ

In this case, we call that system (1) is of robust stability
with degree vector ð�1; . . . ; �N

Þ.

Remark 10: System (42) is more general than the in-
terconnected model (35) discussed by Stipanovic and
Siljak (2001). It is because the system (42) with
Ci ¼ Ii, Aij ¼ 0 for i 6¼ j, Hi ¼ 0 and mi ¼ 1 is the
same as those discussed by Stipanovic and Siljak
(2001), that is, no linear interconnected terms Aij

(i 6¼ j) and no control input perturbation are consid-
ered by Stipanovic and Siljak (2001).

5.1. Static output feedback

As a counterpart of } 3, in this subsection, we present
a decentralized static output feedback controller design
as

uðkÞ ¼ KyðkÞ ¼ diagfK1;K2; . . . ;KN
g

y1ðkÞ

y2ðkÞ

..

.

y
N
ðkÞ

0
BBBBBB@

1
CCCCCCA

ð49Þ

where matrices Ki 2 Rmi�pi to be determined,
i ¼ 1; 2; . . . ;N.

For convenience, let �i ¼ �
2
i , i ¼ 1; 2; . . . ;N.

Similar to Theorem 1, the following theorem presents
an explicit way to construct decentralized static output
feedback controller law (49), in which sufficient con-
dition is presented by means of LMI.

Theorem 5: System (44) is robustly stabilizable with
degree vector ð�1; . . . ; �N

Þ by means of decentralized
static output feedback (49) if the following optimization
problem on matrices Qi 2 Rni�ni , Xi 2 Rmi�pi and
Zi 2 Rpi�pi (i ¼ 1; 2; . . . ;N) is solvable

minimize �1 þ �2 þ � � � þ �
N

subject to LD G0;Q;G1;G2ð Þ < 0;

CiQi ¼ ZiCi; i ¼ 1; 2; . . . ;N

9>>>=
>>>;

ð50Þ

where

G0 ¼ diagf�1I1; . . . ; �NINg; G1 ¼ AQþ BXC

G2 ¼ QF 0
1 C0X 0H 0

1

 �
� � � QF 0

N C0X 0H 0
N

 � �0
Q ¼ diagfQ1;Q2; . . . ;QN

g; X ¼ diagfX1;X2; . . . ;XN
g

Z ¼ diagfZ1;Z2; . . . ;ZN
g

9>>>>>>>=
>>>>>>>;

ð51Þ

In this case, the static output feedback law can be given as

uiðkÞ ¼ XiZ

1
i yiðkÞ; i ¼ 1; 2; . . . ;N ð52Þ

Proof: Similar to the proof of Theorem 1, Zi is non-
singular for i ¼ 1; 2; . . . ;N, which implies that (52) is
well-defined. Then the closed-loop systems of (44), (49)
and (52) can be rewritten in the form of (1) with con-
straint (46)

A0 ¼ Aþ BKC; g½k; xðkÞ� ¼ f k; xðkÞ;KCxðkÞ½ �

K ¼ diagfK1; . . . ;KNg ¼ diagfX1Z

1
1 ; . . . ;XNZ


1
N

9=
;
ð53Þ

In addition, from (43) we have

g0½k; xðkÞ�g½k; xðkÞ� � x0ðkÞ
XN
i¼1

�2
i

Fi

HiKC

� �0
Fi

HiKC

� �
xðkÞ

ð54Þ

That is

Gi ¼
Fi

HiKC

� �
; i ¼ 1; 2; . . . ;N ð55Þ

Noticing that CiQi ¼ ZiCi, Ki ¼ XiZ

1
i for i ¼ 1;

2; . . . ;N, then CQ ¼ ZC and KZ ¼ X , which implies
that KCQ ¼ KZC ¼ XC. Therefore

A0Q ¼ ðAþ BKCÞQ ¼ AQþ BKCQ ¼ AQþ BXC ¼ G1

G1

..

.

GN

0
BBBB@

1
CCCCAQ ¼

F1Q

H1KCQ

 !

..

.

FNQ

HNKCQ

 !

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼

F1Q

H1XC

 !

..

.

FNQ

HNXC

 !

0
BBBBBBBBBB@

1
CCCCCCCCCCA

¼ G2

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð56Þ

Then the LMI in (50) is equivalent to the LMI in (47)
and it follows from Lemma 4 that the resulting closed-
loop systems are robustly stable, which completes the
proof. &

Choose Ci ¼ Ii, that is yi ¼ xi for i ¼ 1; 2; . . . ;N,
then the following result can be directly obtained from
Theorem 5.
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Corollary 1: System (44) is robustly stabilizable with
degree vector ð�1; . . . ; �N

Þ by means of decentralized
static state feedback if the following convex optimization
problem on matrices Qi 2 Rni�ni and Xi 2 Rmi�ni

(i ¼ 1; 2; . . . ;N) is solvable

minimize �1 þ �2 þ � � � þ �
N

subject to LD G0;Q;G1;G2ð Þ < 0

)
ð57Þ

where

G0 ¼ diagf�1I1; . . . ; �NINg; G1 ¼ AQþ BX

G2 ¼ QF 0
1 X 0H 0

1

 �
� � � QF 0

N X 0H 0
N

 � �0
Q ¼ diagfQ1;Q2; . . . ;QN

g; X ¼ diagfX1;X2; . . . ;XN
g

9>>>=
>>>;

ð58Þ

In this case, the static state feedback law can be given as
follows

uiðkÞ ¼ XiQ

1
i xiðkÞ; i ¼ 1; 2; . . . ;N ð59Þ

Remark 11: Similar to Remark 5, the decentralized
control law in Corollary 2 can be obtained directly
from the solution of a convex optimization problem,
which is less conservative than the results given by Sti-
panovic and Siljak (2001). In their work, some addi-
tional constraints (see Li and ~PPi in (39)–(41) by
Stipanovic and Siljak (2001)) are required to ‘recover’
control gain Ki from the relating matrix inequality
even in this special case.

Suppose that the singular value decomposition of Ci

is

Ci ¼ Ui C0i 0ð ÞV 0
i ð60Þ

where Ui 2 Rpi�pi and Vi 2 Rni�ni are unitary matrices
and C0i 2 Rpi�pi is a diagonal matrix with positive diag-
onal elements in decreasing order, i ¼ 1; 2; . . . ;N.

Similar to Theorem 2, we have the following result
from Lemma 3.

Theorem 6: System (44) is robustly stabilizable with
degree vector ð�1; . . . ; �N

Þ by means of decentralized
static output feedback (49) if the following convex
optimization problem on matrices Q1i 2 Rpi�pi ,
Q2i 2 Rðni
piÞ�ðni
piÞ, Xi 2 Rmi�pi is solvable

minimize �1 þ �2 þ � � � þ �
N

subject to LD G0;Q;G1;G2ð Þ < 0

)
ð61Þ

where

G0 ¼ diagf�1I1; . . . ; �NINg; G1 ¼ AQþ BXC

G2 ¼ QF 0
1 C0X 0H 0

1

 �
� � � QF 0

N C0X 0H 0
N

 � �0
Q ¼ diag V1

Q11 0

0 Q12

 !
V 0

1; . . . ;VN

QN1 0

0 QN2

 !
V 0

N

( )

X ¼ diagfX1;X2; . . . ;XN
g

9>>>>>>>>>>=
>>>>>>>>>>;

ð62Þ

In this case, the static output feedback law can be given as

uiðkÞ ¼ XiUiC0iQ

1
i1 C
1

0i U
0
i yiðkÞ; i ¼ 1; 2; . . . ;N

ð63Þ

5.2. Dynamic output feedback

In this subsection, we consider stabilization for
system (44) or (42) via the following Luenberger-like
decentralized dynamic output feedback controller

x̂xiðkþ 1Þ ¼ Aiix̂xiðkÞ þ BiuiðkÞ þ Li yiðkÞ 
 Cix̂xiðkÞ½ �

uiðkÞ ¼ Kix̂xiðkÞ

9=
;
ð64Þ

where Li 2 Rni�pi and Ki 2 Rmi�ni (i ¼ 1; 2; . . . ;N) are
parameter matrices to be determined.

Let eiðkÞ ¼ xiðkÞ 
 x̂xiðkÞ, ziðkÞ ¼ x̂x0iðkÞ e0iðkÞ
 �0

,
i ¼ 1; 2; . . . ;N; and

x̂xðkÞ ¼ x01ðkÞ x02ðkÞ � � � x0NðkÞ
 �0

eðkÞ ¼ e01ðkÞ e02ðkÞ � � � e0NðkÞ
 �0

zðkÞ ¼ z01ðkÞ z02ðkÞ � � � z0NðkÞ
 �0

9>>>>=
>>>>;

ð65Þ

then after some manipulation, the closed-loop systems
of (42) and (64) can be rewritten in the form of (1) with
constraint (46)

A0 ¼ ð ~AAijÞN�N ; g½k; zðkÞ� ¼ block gi½k; zðkÞ�ð ÞN�1

~AAii ¼
Aii þ BiKi LiCi

0 Aii 
 LiCi

 !

~AAij ¼
0 0

Aij Aij

 !
; i 6¼ j

gi½k; zðkÞ� ¼
0

fi k; x̂xðkÞ þ eðkÞ;Kx̂xðkÞ½ �

 !

K ¼ diagfK1; . . . ;KNg

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

ð66Þ

In this case, after some manipulations, g½k; xðkÞ� is satis-
fied with constraint (46), where
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Gi ¼
Fi diagf I1 I1ð Þ; . . . ; IN INð Þg

Hi diagfK1 I1 0ð Þ; . . . ;KN IN 0ð Þg

 !
ð67Þ

Similar to Theorems 2, 4 and 6, we have the following
results from Lemma 3.

Theorem 7: System (44) is robustly stabilizable with
degree vector ð�1; . . . ; �N

Þ by means of decentralized
dynamic output feedback (64) if the following convex
optimization problem on matrices Qi1 2 Rni�ni ,
Qi21 2 Rpi�pi , Qi22 2 Rðni
piÞ�ðni
piÞ, Xi 2 Rmi�ni and
Yi 2 Rni�pi (i ¼ 1; 2; . . . ;N) is solvable

minimize �1 þ �2 þ � � � þ �
N

subject to LD G0;Q;G1;G2ð Þ < 0

)
ð68Þ

where Qi2 ¼ Vi diag fQi21;Qi22gV 0
i , Qi ¼ diag fQi1;Qi2g

Q ¼ diag fQ1;Q2; � � � ;QN
g; G1 ¼ block G1ij

 �
N�N

;

G2 ¼ block G2ið ÞN�1

G1ii ¼
AiiQi1 þ BiXi YiCi

0 AiiQi2 
 YiCi

 !
;

G1ij ¼
0 0

AijQj1 AijQj2

 !
; i 6¼ j

G2i ¼
Fidiag

Qi1 Qi2

Qi1 Qi2

 !
; . . . ;

QN1 QN2

QN1 QN2

 !( )

Hidiag X1 0ð Þ; . . . ; XN 0ð Þf g

0
BB@

1
CCA;

i; j ¼ 1; 2; � � � ;N

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð69Þ

In this case, a decentralized dynamic output feedback law
can be given by (64) with

Li ¼ YiUiC0iQ

1
i21C


1
0i U

0
i ; Ki ¼ XiQ


1
i1 ;

i ¼ 1; 2; . . . ;N
ð70Þ

Remark 12: The main results of } 5 extends those of
}} 3 and 4. From Remark 10, we can see that } 5 also
extends the main result on decentralized static state
feedback control design developed by Stipanovic and
Siljak (2001).

6. Numerical examples

In the following three examples, MATLAB LMI
Toolbox (Gahinet et al. 1995) is used to compute the
convex optimization problem.

Example 1: Consider the discrete-time system (see
Example 3 by Stipanovic and Siljak (2001)

xðkþ 1Þ ¼
0 1


2 
3

 !
xðkÞ

þ
0

1

 !
uðkÞ þ f ðk; xðkÞ; uðkÞÞ

ð71Þ

with quadratic constraint (12), where F ¼ I2 and H ¼ 0.

In this example, Corollary 1 is applied to construct a
static state feedback law.

We solve the convex optimization problem (22) and
obtain

�max ¼ 0:6283; Q ¼
2:4780 0:3003

0:3003 1:0376

 !
;

X ¼ 5:8854 3:6984ð Þ
ð72Þ

Then by Corollary 1 the control gain for state feedback
can be chosen as

K ¼ 2:0137 2:9815ð Þ: ð73Þ

It is worth pointing out that the maximal bound
�max ¼ 0:6283 is larger than the bound 0:6015 given
by Stipanovic and Siljak (2001). This is because the
restriction on a special structure of L has to be chosen
in LMI by Stipanovic and Siljak (2001) while there is no
restriction on the choice of Q and X in Corollary 1 to
make the bound less conservative. Also see Remark 5.

Example 2: Consider the discrete-time system

xðkþ 1Þ ¼

1 0 
1


1 2 
1

0 
2 0

0
BBB@

1
CCCAxðkÞ

þ


1 0

1 
1

0 
1

0
BBB@

1
CCCAuðkÞ þ f ðk; xðkÞ; uðkÞÞ;

yðkÞ ¼
1 0 0

0 1 0

 !
xðkÞ

ð74Þ

with quadratic constraint (12), where F ¼ I3 and
H ¼ I2.

The static output feedback in the form of (14) can be
constructed by searching the solution of the convex opti-
mization of (27). In this case, similar to Example 1, we
have
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�max ¼ 0:1107; Q1 ¼
48:5971 4:1753

4:1753 2:2294

 !
;

Q2 ¼ 1:0018; X ¼
32:9569 
4:1744


8:3505 
4:4584

 ! ð75Þ

Therefore we can get static output feedback as in the
form of (14) with the gain

K ¼ XQ
1
1 ¼

0:9999 
3:7451


0:0000 
1:9998

 !

In addition, Theorem 4 can be used to construct a
dynamic output feedback controller. Similarly, a sol-
ution of convex optimization problem (38) can be
obtained as

�max ¼ 0:0463;

Q1 ¼

270:5528 36:6934 50:4699

36:6934 46:2278 82:9493

50:4699 82:9493 206:6651

0
BBB@

1
CCCA

Q21 ¼
18:4924 7:1526

7:1526 4:3040

 !
;

Q22 ¼ 1:0034

X ¼
171:7812 
47:6583 
58:6581


82:4515 
60:9956 
124:6559

 !
;

Y ¼

10:7965 2:5426


6:9913 
0:2423


14:3045 
8:6072

0
BBB@

1
CCCA

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
ð76Þ

Therefore a dynamic output feedback controller can be
constructed as in the form of (30) with

L ¼

0:9948 
1:0624


0:9974 1:6012


0:0001 
1:9997

0
BBB@

1
CCCA;

K ¼
0:9132 
3:0249 0:7072


0:1604 
0:6437 
0:3057

 ! ð77Þ

Example 3: Let us consider the following discrete-
time interconnected system, which is the same as (46)
by Stipanovic and Siljak (2001).

x1ðkþ 1Þ ¼

0 1 0

0 0 1


1 4 3

0
BBB@

1
CCCAx1ðkÞ

þ

0

0

1

0
BBB@

1
CCCAu1ðkÞ þ f1ðk; xðkÞÞ

x2ðkþ 1Þ ¼
0 1

4 5

 !
x2ðkÞ þ

0

1

 !
u2ðkÞ þ f2ðk; xðkÞÞ

9>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>;

ð78Þ
with quadratic constraint (43), where F1 ¼ I3, F2 ¼ I2,
H1 ¼ 0 and H2 ¼ 0.

From Corollary 2, we can solve the optimization prob-
lem (57)–(58) and obtain (after 25 iterations)

�1 ¼ 0:3191; �2 ¼ 0:3273 ð79Þ
with the control gains

K1 ¼ 1:0000 
 4:0000 
 3:0000ð Þ;

K2 ¼ 
4:0000 
5:0000ð Þ
ð80Þ

It is interesting to find that the maximal bounds in
this example are larger than the bounds
�1 ¼ �2 ¼ 0:3132 given by Stipanovic and Siljak
(2001) with the same control gain as those in (80). The
reason is similar to that given in Example 1. It shows
that our approach is less conservative than that in
Stipanovic and Siljak (2001).

7. Conclusion

This paper has studied the problems of robust stabil-
ization by means of an output feedback law for a class
of discrete-time system with non-linear perturbations. It
is shown that the problems can be reformulated as con-
vex optimization problems in the form of LMI. The
sufficient conditions for existence of output feedback
laws are obtained. Some extensions are made for a
class of discrete-time non-linear decentralized system.
The unified approach presented in this paper has
improved and generalized the design techniques in the
literature.
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