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Abstract

We prove several results about the existence of sparse sets complete (and hard) for Turing
reductions on different settings and complexity classes over the real numbers.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In recent years a number of papers have been published dealing with extensions of
Mahaney’s Theorem to computations over the real numbers.

Mahaney’s Theorem, published in [16], states that, unless P= NP, there are no sparse
NP-hard sets. A setS ⊆ {0, 1}∗ is said to besparsewhen there is a polynomialp suchthat
for all n ∈ N the subsetSn of all elements inS having sizen hascardinality at mostp(n).
Here{0, 1}∗ denotes the set of all finite sequences of elements in{0, 1}.

Mahaney’s Theorem answers a question which originated from the Berman–Hartmanis
conjecture [2]. This conjecture states that all NP-complete sets (over{0, 1}) are
polynomially isomorphic. That is, for all NP-complete setsA andB, there exists a bijection
ϕ : {0, 1}∗ → {0, 1}∗ suchthatx ∈ A if and only if ϕ(x) ∈ B. In addition bothϕ and its
inverse are computable in polynomial time. So, if the Berman–Hartmanis conjecture holds
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then P �= NP and sparse NP-completesets do not exist.Mahaney’s Theorem shows that
these two consequences of the conjecture are equivalent.

Af ter this seminal result of Mahaney, a whole stream of research developed around
the issue of reductions to “small” sets (see the surveys [1,5]). Three possible directions
in extending Mahaney’s Theorem seem to exist: proving Mahaney-type theorems for
classes other than NP, for various reducibility types, and for other computation models,
in particular, for machines over the reals.This paper is concerned with Mahaney-type
theoremsfor NP, P, and EXP regarding both Turing and many-one reductions for machines
over the realnumbers.

1.1. On the existence of sparseNP-hard sets

The question of extending Mahaney’s Theorem to machines over the real numbers (as
introduced in [4]; see also [3]) was first raised in [9]. A first issue that needed to be resolved
was how to extend the notion of sparseness to subsets ofR

∞ (the disjoint union ofRn for
n ∈ N). The notion suggested in [9] is thefollowing. Let S ⊆ R

∞. We saythatS is sparse
if, for all n ≥ 1, the set

Sn = {x ∈ S | x ∈ R
n}

has dimension at most logq n for some fixedq. Here dimension is the dimension, in the
sense of algebraicgeometry, of the Zariski closure ofSn.

Using this notion of sparseness [9] proves that there are no sparse NP-hard sets under
polynomial time many-one reductions in the context of machines over(R,+,=), i.e.,
machines which do not perform multiplications or divisions and branch only on equality
tests. Note that this result is not conditioned to the inequality P�= NP since this inequality
is known to be true in this setting (cf. [17]).

A natural extension to the result in [9] would consider machines over(R,+,≤); that is,
machines which do not perform multiplications or divisions but are allowed to branch on
inequality tests. While it is unknown whether the existence of sparse NP-hard sets under
many-one reductions implies P= NP in this model, Fournier and Koiran [13] show that
there exist NP-complete sparse sets with respect to Turing reductions. This follows from a
surprising result (Lemma 3 in [13]) which, roughly speaking, states that any NP-complete
set over{0, 1} is NP-complete over(R,+,≤) for Turing reductions. Since the subsets of
elements of sizen of any such setShave dimension 0 the sparseness ofS is immediate.

This naturally raises the question of whether there exist sparse NP-hard sets over
(R,+,=) with respect to Turing reductions. A partial answer was given by Fournier [12]
who shows that there are no sparse definable NP-hard sets over(R,+,=) with respect to
Turing reductions. We recall thatS⊆ R

∞ isdefinablewhen, for alln ≥ 1, Sn is a semialge-
braic subset ofRn; that is,Sn is the set of solutions of a Boolean combination of polynomial
inequalities. Since any set in NP is definable, an immediate consequence is the following.

Proposition 1. There areno sparseNP-Turing-complete sets over(R,+,=).

One cannot hope to remove the requirement that the sparse sets are definable. It is
easy to show (seeSection 2) that there indeed exist sparse Turing-hard sets for NP in this
computational model.
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Theorem 1. There aresparseNP-Turing-hard sets over(R,+,=).

A model of real machines in which multiplications and divisions are permitted was
introduced by Koiran in [15]. To make the model closer to the Turing machine model,
the Koiran model heavily penalizes iterated multiplication. This model is called theweak
model. In the weak model, a machine takes inputs fromR

∞ but the cost of computation
is measured no longer by the number of arithmetic operations performed by the machine.
Instead, the cost of each individual operationx ◦ y depends on the sequences of operations
which lead to the termsx and y from the input data and the machine constants. For this
model, too, it is known that P�= NP [10].

In [8], it was shownthat there are no sparse NPW-hard sets (with respect to many-one
reductions). Here NPW denotes the class NP for the weakmodel. The secondresultin this
paper extends Fournier’s result to the weak model. Our result is stronger than Fournier’s
result in that we do not assume definability. Our non-existence result holds for any family
of sets satisfying a number of conditions, including the family of definable sets.

Definition 1. Let F be a family of sets such that everyS ∈ F is included inR
n for some

n ≥ 1. We say thatF is well-behavedwhen

(i) F contains the semialgebraic sets.
(ii) F is closed under finite unions, intersections and complements.
(iii) F is closed under interior and closure (both interior and closure with respect to the

Euclidean topology).
(iv) For all m, n ≥ 1, for allU ∈ F , for all rational mapϕ : U → R

m, and for allS ∈ F ,
the following two conditions hold: ifS ⊆ R

m thenϕ−1(S) ∈ F , and if S ⊆ U then
ϕ(S) ∈ F .

(v) The notion of dimensionis well-defined and it coincides with the usual one for
semialgebraic sets. In particular, no set inF can contain a set of dimension greater
than its own or be written as a finite union of sets of smaller dimension.

Let F be a well-behaved family of sets. We say that setsS ∈ F or setsS ⊂ R
∞ such

thatS∩ R
n ∈ F for all n arewell-behaved.

Well-behaved families of sets do exist. The obvious example is the family of semialge-
braic sets. But the definition above covers much more general families of sets. In particular,
o-minimal structures are well-behaved families (for an overview of o-minimal structures
and their geometry see [6] or [19]). Thus, in particular, the family of globally subanalytic
sets [11] or the family of sets definedby means of Pfaffian functions [20] are well-behaved.

Theorem 2. There are nosparse well-behavedNPW-Turing-hard sets. In particular, there
are no sparseNPW-Turing-complete sets.

1.2. On the existence of sparseP-hard andEXP-hard sets

As pointed above, another direction in which Mahaney’s result was extended, in the
discretesetting, is the consideration of classes other than NP for completeness (or hardness)
results. Particular attention was paid to the class P where a version of the Hartmanis
conjecture (also raised by Hartmanis [14]) states that there are no P-complete sparse sets.
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In [5] it is noted that “this conjecture, unlike its NP analog, remained open for many years”.
Actually it remained so until 1995 when Ogiwara [18] proved that if a sparse P-complete
set exists then P⊆ DSPACE[log2 n]. In this situation, over the reals, we can take advantage
of the fact that NCR �= PR holds without assumption even in the unrestricted setting to
show the following absolute non-existence result (which includes a trivial extension to
EXPR). On its statement, P-completeness is forpolylogarithmic parallel time reductions
and EXP-completeness is for polynomial parallel time reductions. Also, the wordhard
denotes hardness for many-one reductions and the wordTuring-harddenotes hardness for
Turingreductions.

Theorem 3. (1) There areno sparsePR-hard orEXPR-hard sets.
(2) There are nosparse well-behavedPR-Turing-hard or EXPR-Turing-hard sets. In

particular, there are no sparsePR-Turing-complete orEXPR-Turing-complete sets.
(3) Both (1) and (2) hold for the settings(R,+,−,=), (R,+,−,≤), and the weak

model.

2. Proofs of Theorems 1, 2 and 3

Let us denote by NP=add and NP≤add the classes of problems in NP over(R,+,=) and
(R,+,≤) respectively.

Proof of Theorem 1. Let S ⊂ {0, 1}∗ be any (classical) NP-complete set and consider

S ∗ = {(1, x) | x ∈ S } ∪ {(2, y) | y ∈ R, y ≥ 0}.
Clearly S ∗ is sparse as a subset ofR

∞. We now show that it is NP=
add-Turing-hard. To

do so, consider any setA ∈ NP=
add. Clearly, A ∈ NP≤

add as well. But then, Fournier and
Koiran [13] show that there is an oracle machineM over(R,+,≤) solving A with oracle
S in polynomial time.

We modify M as follows. We replace branch nodes testing a valuez for positivity by
oracle nodes testing whether(2, z) ∈ S ∗. And we replace oracle nodes testing whether a
vectorx ∈ S by oracle nodes testing whether(1, x) ∈ S ∗. Clearly, the new machine is an
oracle machine over(R,+,=) which, with oracleS ∗, decidesA in polynomial time. �

We next proceed to the proof ofTheorem 2.
Let Cn = {x ∈ R

n | x2n

1 + · · · + x2n

n = 1} andC ⊂ R
∞ be the union of the setsCn. We

know thatC ∈ NPW.

Proposition 2. LetF be a well-behavedfamily and let S⊂ R
∞ be such that S∩R

n ∈ F
for all n. Assume S is aNPW-Turing-hard set. Then, there exists k∈ N such that, for all
n ≥ 1, there exist sets E,Ω ∈ F , E ⊂ R

n andΩ ⊂ Cn, and a rational map h: R
n → R

m,
where m= nk, well-defined on E andE ∩ Ω , such that

(i) E ∩ Ω = ∅,

(ii) dim(E ∩ Ω) = n − 1,

(iii) the degrees of numerator and denominator of the components of h are bounded by a
polynomial in n, and

(iv) h(E ∩ Ω) ∩ h(E) = ∅.
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Proof. SinceC ∈ NPW andS is NPW-Turing-hard, there is a deterministic oracle machine
M which, with oracleS, decidesC in polynomial time for the weak model. Letp be a
polynomial time bound forM.

Considern ∈ N. The computation ofM over inputs of sizen induces a computation
tree ofdepth at mostp(n) whose branching nodes are either a sign test or an oracle node.

Let ν be a branching node in this tree. Ifν is a sign test, thenν tests whetherϕν(x) ≥ 0,
whereϕν is a rational function andx ∈ R

n is the input. In addition, sincep is a bound
for the weak running time ofM, both the numerator and denominator of a relatively prime
representation of ϕν have degree bounded byp(n). Note that, sinceF is closed under
complements and inverse images of rational maps, the sets{x ∈ R

n | ϕν(x) ≥ 0} and
{x ∈ R

n | ϕν(x) < 0} are inF .
If insteadν is an oracle node then it tests whether

ϕν(x) = (ϕ1(x), . . . , ϕm(x)) ∈ Sm

where m ≤ p(n) and, for i = 1, . . . , m, ϕi is a rational function as above. Again,
since F is closed under complements and inverse images of rational maps, the sets
{x ∈ R

n | ϕν(x) ∈ Sm} and{x ∈ R
n | ϕν(x) �∈ Sm} are inF .

For anyleaf γ in the tree,we denote byΩγ the set ofpoints inR
n whose computation

ends inγ . The setΩγ is the intersection of sets of the form{x ∈ R
n | ϕν(x) ≥ 0} or

{x ∈ R
n | ϕν(x) < 0} with ν a branching node, and sets of the form{x ∈ R

n | ϕν(x) ∈ Sm}
or {x ∈ R

n | ϕν(x) �∈ Sm} with ν an oracle node. Since in all four cases these sets are in
F we conclude thatΩγ ∈ F . Now letA be the set of accepting leaves. Then,

Cn =
⋃

γ∈A
Ωγ .

Since dim(Cn) = n − 1 and theunion above is a finite union of sets inF there exists a
leafγ 0 ∈ A such that dimΩγ 0 = n − 1. So,Ωγ 0 is a subset ofCn, it belongs toF , and it
is of maximal dimension (among theΩγ for γ ∈ A).

Let ν be a branching node in the path leading toγ 0. Thedomainof ν is

Ων = {x ∈ R
n | x reaches the nodeν}

and itsexcluded part,

Eν = {x ∈ Ων | x deviates atν from the pathleading toγ 0}.
If ν1, . . . , ν� are the branching nodes in the path leading toγ 0 we then have the disjoint
union

R
n − Ωγ 0 = Eν1 ∪ · · · ∪ Eν� .

Again, we remark thatEν1, . . . , Eν� are all sets inF .
We next show that there existsi ≤ � such that dim(Eνi ∩ Ωγ 0) = n − 1.
This follows from the fact that, since taking closures commutes with finite unions,

R
n = Eν1 ∪ · · · ∪ Eν� .
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Therefore,

Ωγ 0 = (Ωγ 0 ∩ Eν1) ∪ · · · ∪ (Ωγ 0 ∩ Eν�)

and, since dimΩγ 0 = n − 1, it follows that there existsi ≤ � such that dim(Ωγ 0 ∩ Eνi ) =
n − 1.

Let E = Eνi , Ω = Ωγ 0, and h = ϕνi , h : R
n → R

mi . We just proved that

dim(Ω ∩ E) = n − 1 and thus (ii) holds. In addition,Ωγ 0 ⊆ Ωνi , from which E ∩ Ω = ∅
and (i) holds as well. Part (iii) follows, as we already remarked, from the weakness of
M. Finally, for part (iv), consider first the case thatνi is an oracle node. Then forS
either Smi or its complement, we haveEνi ⊆ ϕ−1

νi
(S) and Ωγ 0 ⊆ ϕ−1

νi
(Sc), wherec

denotes complement, and thereforeh(E ∩ Ω) ∩ h(E) = ∅. A similar reasoning holds if
νi is a test node withS now either R

+ or R
− − {0}, showing thatin this case as well,

h(E ∩ Ω) ∩ h(E) = ∅. �

The following result in real algebraic geometry will be used. Its proof can be found in
Chapter 19 of [3].

Proposition 3. Let f ∈ R[x1, . . . , xn] be an irreducible polynomial such that the
dimension ofits zero setZ( f ) ⊆ R

n is n−1. Then, for any polynomial g∈ R[x1, . . . , xn],
g vanishes onZ( f ) if and only if g is a multiple of f . �

Let fn = x2n

1 + · · · + x2n

n − 1 so thatCn = {x ∈ R
n | fn(x) = 0}.

Proposition 4. With the notations ofProposition2, let k− 1 = dimh(E ∩ Ω).

(i) There exist indices i1, . . . , i k ∈ {1, . . . , m}, a polynomial g∈ R[y1, . . . , yk] and a
rational function q∈ R(x1, . . . , xn) with bothnumerator and denominator relatively
prime to fn suchthat

g(hi1, . . . , hik ) = f �
n q

for some� > 0.
(ii) For n sufficiently large, k≥ n.

Proof. Let K = dimh(E). Since dimh(E) = K , there existi1, . . . , i K ∈ {1, . . . , m} such
that the functionshi1, . . . , hiK are algebraically independent.

We next want to show thatk ≤ K . To do so letX = h(E ∩ dom(h)), Y = h(E) and
Z = h(E ∩ Ω). Here dom(h) denotes the set of points inRn whereh is well-defined.
We have that all X, Y and Z are sets ofF in R

m. In addition, Z is contained in the
closure ofY with respect to the Euclidean topology relative toX sinceh is continuous and
Y ∩ Z = ∅ by Proposition 2(iv). From here it follows thatZ is included in the boundary of
Y relative to X. Hence, dimZ < dimY = dim X.

The above shows that dimh(E ∩ Ω) < K , i.e. k ≤ K . Therefore, there exists a set
of k elements in{i1, . . . , i K }, which we may assume arei1, . . . , i k, and a polynomial
g ∈ R[y1, . . . , yk] such that, for all x ∈ E ∩ Ω , g(hi1(x), . . . , hik (x)) = 0. Write this
as a rational functiong(h) = a/b with a, b ∈ R[x1, . . . , xn] relatively prime. Then, since
dim(E ∩ Ω) = n − 1, E ∩ Ω ⊂ Cn, Cn is irreducible andhi1, . . . , hik are algebraically
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independent,a(Cn) = 0 and a �= 0. By Proposition 3this implies that there exists
r ∈ R[x1, . . . , xn] suchthat a = r fn. If � is the largest power offn dividing a then
part (i) follows by takingq = r ′

b , wherer ′ is the quotient ofr divided by f �−1
n .

Part (ii) is proved as in Proposition 3.3 of [8]. �

Proof of Theorem 2. Assume the setS in Proposition 2is sparse and letq be a polynomial
such that dim(Sn) ≤ q(logn). Let n ∈ N, n ≥ 3, be sufficiently large such that
q(log p(n)) < n − 1 andpart (ii) of Proposition 4holds. Recall thatp is a polynomial
bounding the running time of the reduction inProposition 2.

Recall from the proof ofProposition 2thath = ϕν for some branching nodeν in the
tree associated toM andn. First assume thatν is a sign test. Then dim(h(Ω)) ≤ 1 since
h(Ω) ⊆ R. But

dimh(Ω) ≥ dimh(E ∩ Ω) = k − 1 ≥ n − 1 > 1.

Therefore,ν can not be a sign test and is an oracle node instead. Letm be such that
h : R

n → R
m. Thenm ≤ p(n) and

dimh(Ω) ≥ dimh(E ∩ Ω) = k − 1 ≥ n − 1 > q(log p(n)) ≥ dim Sm

and

dimh(E) = K ≥ k ≥ n > q(log p(n)) ≥ dim Sm.

This is a contradiction since eitherh(E) or h(Ω) is included inSm. �

We finally proceed with the proof ofTheorem 3. Before doing so, we recall that, for
k ∈ N, NCk

R
denotes the class of subsets ofR

∞ which can be decided in parallel time
O(logk n). The class NCR is defined to bethe union of the classes NCk

R
. Also, PARR

is defined to be the class of subsets ofR∞ which can be decided in parallel timenO(1).
Functional versions FNCR and FPARR of NCR and PARR are defined in the obvious way.
For formal definitions and basic properties of these classes see Chapter 18 in [3]. When
we refer to PR-hardness, reductions are in FNCR. Similarly, when talking about EXPR-
hardness, reductions are in FPARR.

Proof of Theorem 3. In [7] it is shown that the setC defined just beforeProposition 2
does not belong to NCR. The ideabehind the proof is to assume it does and to consider the
computation tree obtained by unwinding the NCR computation. This tree has an enormous
number of leaves since its branching nodes may have a polynomial number of successors.
But the functions computed along its paths (and in particular those whose sign is tested
at the branching nodes) are rational functions whose numerators and denominators have
degrees polynomially bounded.

Let nowϕ be an FNCR reduction fromC to a PR-hard setS. Using the above, theproof
of Proposition 3.2 in [8] can be adapted to hold forϕ. This yields, for all n sufficiently
large,a point x ∈ Cn and an open ballU ⊆ R

n centered atx such that the restriction ofϕ
to U is a rational maph : U → R

m for somem bounded by a polynomial inn. In addition,
if h1, . . . , hm are the coordinates ofh, then the degrees of numerator and denominator of
hi are bounded by a polynomial inn, for i = 1, . . . , m.
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From the above, the arguments in [8, Proposition 3.3] yield a version ofProposition 4
with E ∩ Ω replaced byU ∩ Cn. The restof the proof of (1) for PR easily follows.

The proof for EXPR is similar except that, forn ≥ 1, we take

Cn = {x ∈ R
n | x22n

1 + · · · + x22n

n = 1}.
The proof of (2) is done in the same manner. One now uses a simple modification in the
proof ofProposition 2.

Also the proof of (3) is similar. Note that in the additive setting one has to replace degree
by coefficient size. Thus, for instance, over either(R,+,−,≤) or (R,+,−,=), the setC
given by

Cn = {x ∈ R
n | 2nx1 + · · · + 2nxn = 1}

is in P but not in NC. �

Acknowledgement

The author was partially supported by SRG grant 7001290.

References

[1] V. Arvind, Y. Han, L. Hemachandra, J. Köbler, A. Lozano, M. Mundhenk, M. Ogiwara, U. Schöning,
R. Silvestri, T. Thierauf, Reductions to sets of low information content, in: K. Ambos-Spies, S. Homer,
U. Schöning (Eds.), Complexity Theory: Current Research, Cambridge University Press, 1993, pp. 1–45.

[2] L. Berman, J. Hartmanis, On isomorphism and density of NP and other complete sets, SIAM J. Comput. 6
(1977) 305–322.

[3] L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation, Springer-Verlag, 1998.
[4] L. Blum, M. Shub, S. Smale, On a theory of computation and complexity over the real numbers: NP-

completeness, recursive functions and universal machines, Bull. Amer. Math. Soc. 21 (1989) 1–46.
[5] J.-Y. Cai, M. Ogihara, Sparse sets versus complexity classes, in: L.A. Hemaspandra, A.L. Selman (Eds.),

Complexity Theory Retrospective II, Springer-Verlag, 1997, pp. 53–80.
[6] M. Coste, An Introduction to o-minimal Geometry, Istituti Editoriali e Poligrafici Internazionali, 2000.
[7] F. Cucker, PR �= NCR, J. Complexity 8 (1992) 230–238.
[8] F. Cucker, D.Yu. Grigoriev, There are no sparse NPW-hard sets, SIAM J. Comput. 31 (2001) 193–198.
[9] F. Cucker, P. Koiran, M. Matamala, Complexity and dimension, Inform. Process. Lett. 62 (1997) 209–212.

[10] F. Cucker, M. Shub, S. Smale, Separation of complexity classes in Koiran’s weak model, Theoret. Comput.
Sci. 133 (1994) 3–14.

[11] J. Denef, L. van den Dries,p-adic and real subanalytic sets, Ann. of Math. 128 (1998) 80–138.
[12] H. Fournier, Sparse NP-complete problems over the reals with addition, Theoret. Comput. Sci. 255 (2001)

607–610.
[13] H. Fournier, P. Koiran, Lower bounds are not easier over the reals: inside PH, in: 28th International

Colloquium on Automata, Languages and Programming, Lect. Notes in Comp. Sci., vol. 1853, Springer-
Verlag, 2000, pp. 832–843.

[14] J. Hartmanis, On log-tapeisomorphisms of complete sets, Theoret. Comp. Sci. 7 (1978) 231–243.
[15] P. Koiran, A weak version of the Blum, Shub & Smale model, J. Comput. System Sci. 54 (1997)

177–189, A preliminary version appeared in 34th Annual IEEESymp. on Foundations of Computer Science,
pp. 486–495, 1993.

[16] S.R. Mahaney, Sparse completesets for NP: solution of a conjecture by Berman and Hartmanis, J. Comput.
System Sci. 25 (1982) 130–143.



F. Cucker / Annals of Pure and Applied Logic 134 (2005) 53–61 61

[17] K. Meer, A note on a P�= NP result for a restricted class of real machines, J. Complexity 8 (1992) 451–453.
[18] M. Ogihara, Sparse sets for P yield space-efficient algorithms, in: 36th Annual IEEE Symp. on Foundations

of Computer Science, 1995, pp. 354–361.
[19] L. van den Dries, C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996)

497–540.
[20] A.J. Wilkie, A theorem of the complement and some new o-minimal structures, Selecta Math. (N.S.) 5

(1999) 397–421.


	On sparseness, reducibilities, and complexity
	Introduction
	On the existence of sparse NP-hard sets
	On the existence of sparse P-hard and EXP-hard sets

	Proofs of Theorems 1, 2 and 3
	Acknowledgement
	References


