Intraseasonal Variation of Visibility in Hong Kong

Wen Zhou, Richard Li and Eric Chow

Guy Carpenter Asia-Pacific Climate Impact Center School of Energy and Environment, City University of Hong Kong

Visibility & Air Pollution

- Visibility data were used to estimate PM_{2.5} levels (McDonnell et al., 2000), the relationship between visibility and air particles (Malm et al., 1994; Kim et al., 2011)
- Daily reduced visibility is defined as visibility below 8 km along with relative humidity < 95% (Chang & Koo, 1986; Leung & Lam, 2008). The number of days in which visibility was less than 8 km rose to 102 in 2004 (HKO)

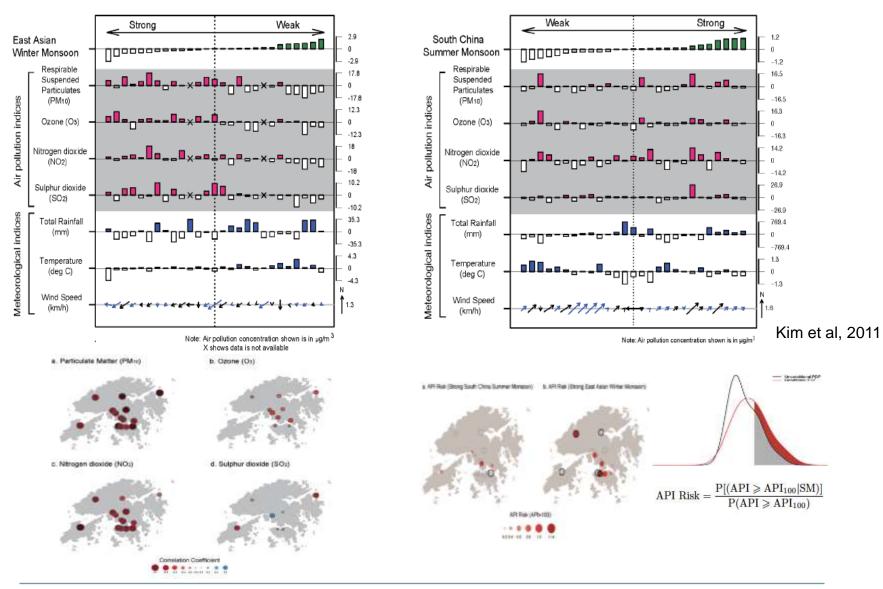
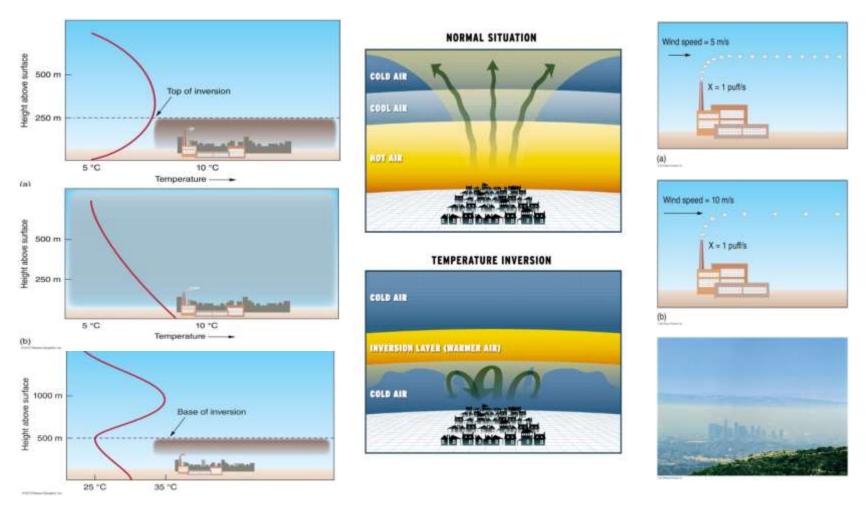

No	Station Name	PM ₁₀	03	NO ₂	SO_2
1	Central/Western	-0.81	-0.41	-0.84	-0.03
2	Eastern	-0.80	-0.35	-0.82	0.01
3	Kwai Chung	-0.74	-0.53	-0.61	0.35
4	Kwun Tong	-0.77	-0.58	-0.68	0.22
5	Sha Tin	-0.79	-0.44	-0.83	0.13
6	Sham Shui Po	-0.70	-0.64	-0.59	0.22
7	Tai Po	-0.72	-0.44	-0.48	0.00
8	Tap Mun	-0.74	-0.60	-0.42	-0.30
9	Tsuen Wan	-0.76	-0.43	-0.78	0.04
10	Tung Chung	-0.72	-0.17	-0.75	-0.52
11	Yuen Long	-0.71	-0.27	-0.72	-0.29
12	Causeway Bay	-0.67	NA	-0.74	-0.20
13	Central	-0.74	NA	-0.73	-0.19
14	Mong Kok	-0.76	NA	-0.75	-0.09

Table 2. Correlation between air pollution indices and visibility during 2001-2007.

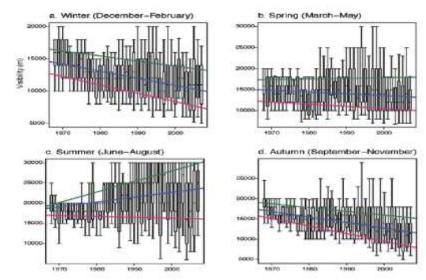
* Correlation estimates shown in **boldface** is statistically significant at the 5% level.


Kim et al, 2011

Variability and Risk analysis of HK air quality & Monsoon and ENSO

Page 3 | May 25 2017| CityU

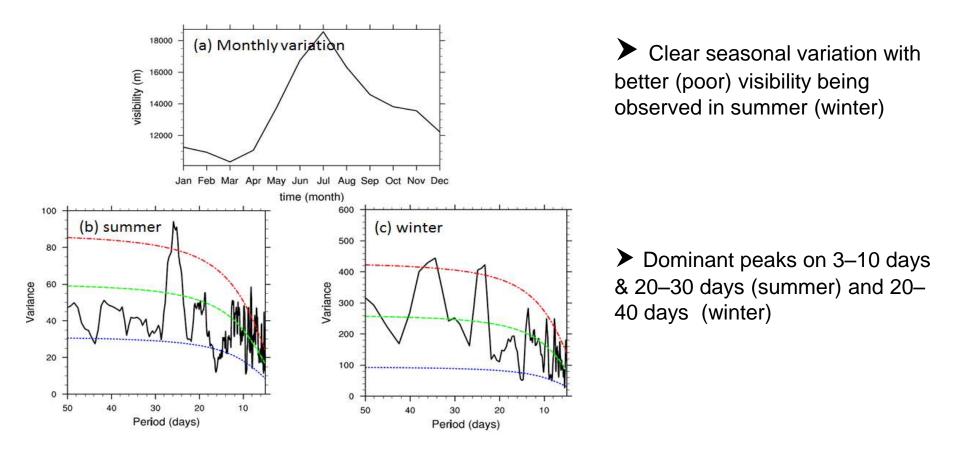
Atmospheric Conditions and Air Pollution


➤To further investigate the intraseasonal variation of visibility and the associated modulating factors in order to reveal the influence of atmospheric conditions.

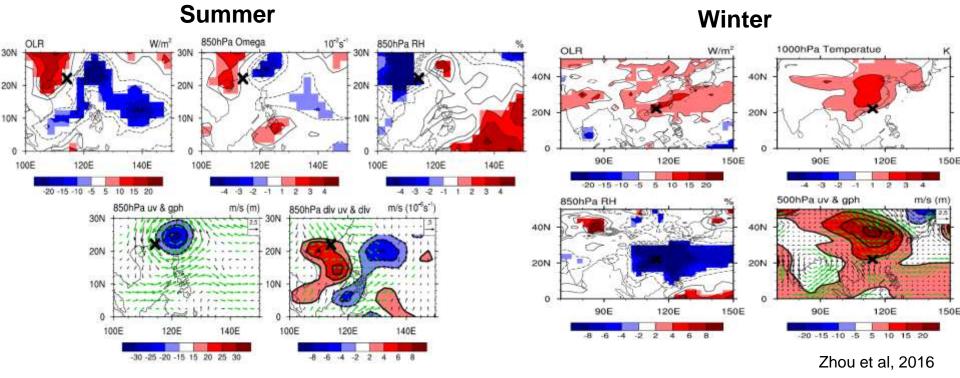
Datasets

➤ Daily meteorological data from NCEP-NCAR reanalysis: relative humidity (RH), specific humidity (q), omega, geopotential height (GPH), zonal wind (u), meridional wind (v), and temperature (temp)

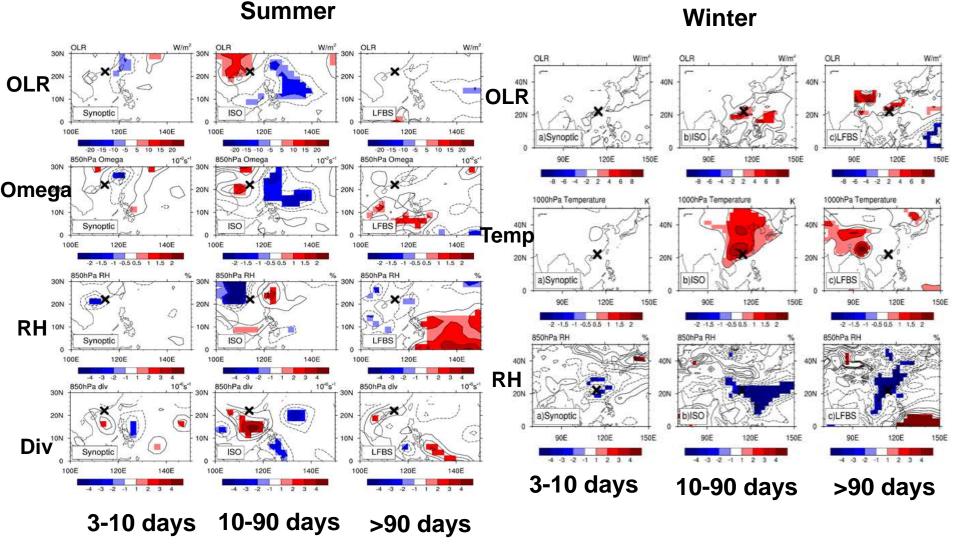
- Hourly visibility data during 2000–2007 from the HKO
- API from EPD


API	Air Pollution Level	Health Implications		
0 to 25	Low	Not expected		
26 to 50	Medium	Not expected for the general population		
51 to 100	High	Acute health effects are not expected but chronic effects may be observed if you are exposed to such levels persistently for a long time.		
101 to 200	Very High	People with existing heart or respiratory illnesses may notice mild aggravation of their health conditions. Generally healthy individuals may also notice some discomfort.		
201 to 500	Severe	People with existing heart or respiratory illnesses may experience significant aggravation of their symptoms. There may also be widespread symptoms in the healthy population (e.g. eye irritation, wheezing, coughing, phlegm and sore throats).		

Average and 90th percentile of daily reduced visibility hours during summer and winter


Number of hours of reduced visibility per day	Summer (JAS)	Winter (JFM)
Average	1.59	6.48
90 th percentile	7	17

Page 5 | May 25 2017| CityU


Power spectrum of daily reduced visibility hours in Hong Kong

Circulation Features associate with Visibility Impairment

- Suppressed convection
- Reduced moisture
- Northeasterlies

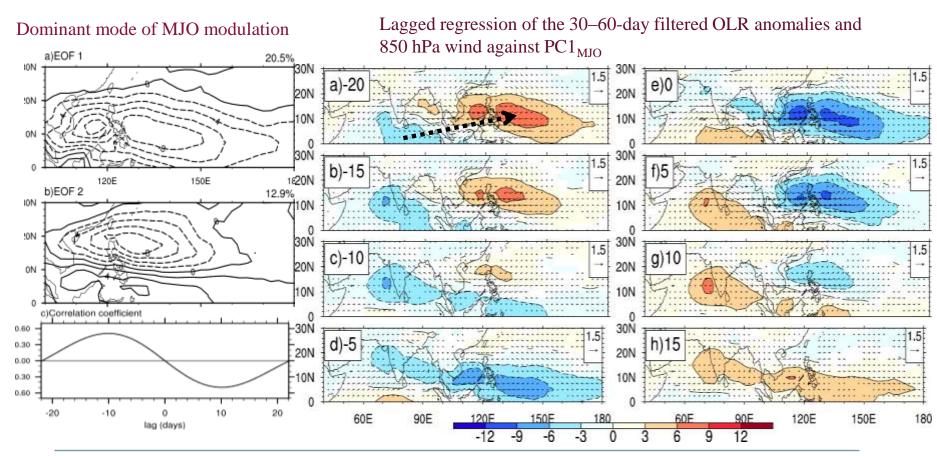
Multiscale control of visibility impairment in Hong Kong & synoptic, intraseasonal, and low-frequency background

Page 8 | May 25 2017 | CityU

Synoptic, intraseasonal, and LFBS components and the overall anomalies of different environmental variables in Hong Kong

Summer

Circulation anomalies (averaged over 20–25°N; 110–115°E)	Synoptic component	Intraseasonal component	LFBS component	Total
OLR (W/m²)	1.71 (17%)	8.11 (79%)	0.14 (1%)	10.24
850 hPa omega	0.35 (31%)	0.81 (71%)	0.11 (10%)	1.14
850 hPa relative humidity (%)	-1.49 (33%)	-2.51 (56%)	-0.47 (11%)	-4.47
850 hPa divergence (10 ⁻⁵ s ⁻¹)	0.48 (16%)	1.54 (52%)	0.96 (32%)	2.99


Winter

Circulation anomalies (averaged over 20–25°N; 110–115°E)	Synoptic component	Intraseasonal component	LFBS component	Total
OLR (W/m²)	1.47 (16%)	3.79 (41%)	3.79 (41%)	9.30
1000 hPa temperature (K)	0.038 (2%)	1.43 (92%)	0.094 (6%)	1.56
850 hPa relative humidity (%)	-2.27 (22%)	-4.69 (45%)	-3.38 (32%)	-10.52

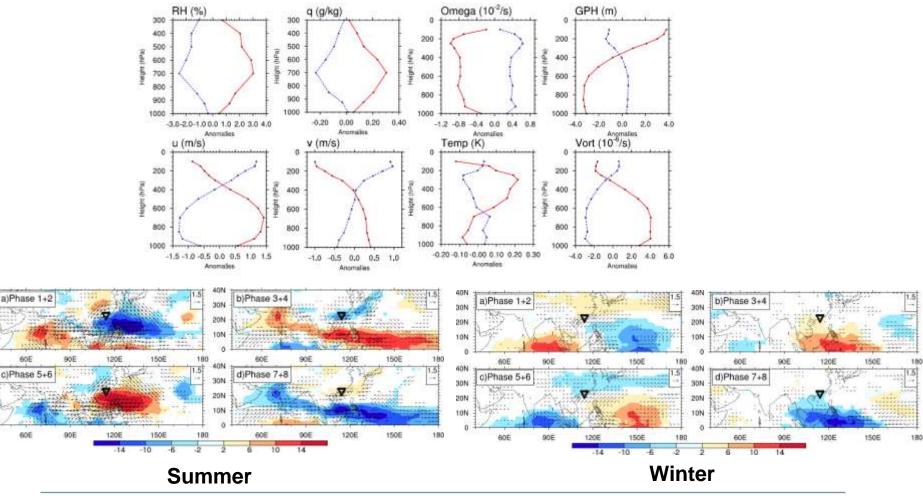
Intraseasonal Oscillation: MJO modulation

The 30–60-day Madden-Julian Oscillation (MJO) exhibit typical origin, spatial scale and propagation characteristics

 $\begin{array}{l} \textbf{Phase}_{MJO} = \textbf{tan}^{-1} \left[\textbf{PC2}_{MJO} \ / \ \textbf{PC1}_{MJO} \right] \\ \textbf{Amplitude}_{MJO} = \left[\textbf{PC1}_{MJO}^{2} + \ \textbf{PC2}_{MJO}^{2} \right]^{1/2} \end{array}$

Page 10 | May 26 2017 | CityU

Changes in local visibility and API for different MJO phases


MJO	No of hours of reduced visibility per day	No of hours of API > 100 per day (Central)	No of hours of API > 100 per day (Mongkok)	No of hours of API > 100 per day (Causeway Bay)	
Phase 1+2	2.13	1.26	1.37	0.37	
Phase 3+4	0.87	0.28	0.16	0	Summer
Phase 5+6	0.85	0.90	0.79	0.30	Cannor
Phase 7+8	2.38	1.48	1.41	0.81	
Climatology	1.59	0.97	0.91	0.36	

MJO	No of hours of reduced visibility per day	No of hours of API > 100 per day (Central)	No of hours of API > 100 per day (Mongkok)	No of hours of API > 100 per day (Causeway Bay)	
Phase 1+2	6.25	2.95	2.53	1.99	Wintor
Phase 3+4	7.23	2.08	0.92	1.06	Winter
Phase 5+6	6.55	0.35	0.21	0.35	
Phase 7+8	6.66	1.83	0.79	1.28	
Climatology	6.48	1.84	1.13	1.19	

Page 11 | May 25 2017 | CityU

MJO modulation in summer

Vertical profiles of 30–60-day filtered anomalies of relative humidity (RH), specific humidity (q), omega, geopotential height (GPH), zonal wind (u), meridional wind (v), temperature (temp), and relative vorticity (Vort) for **MJO phase 3+4 (red lines)** and **phase 7+8 (blue lines) in summer**

Page 12 | May 25 2017| CityU

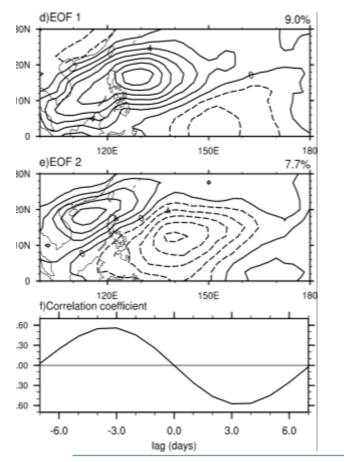
30N

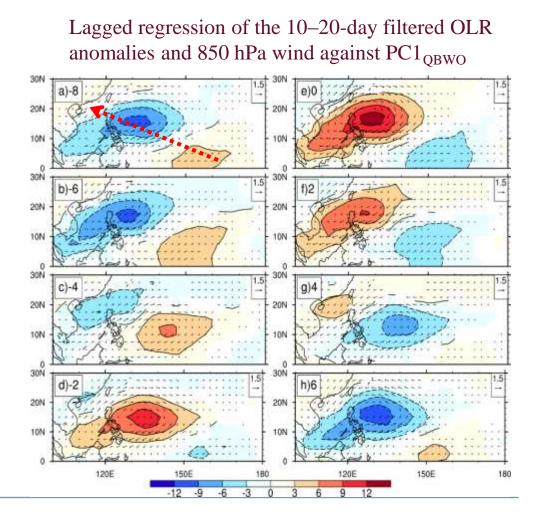
20N

10N

40N

30N


20N


TON

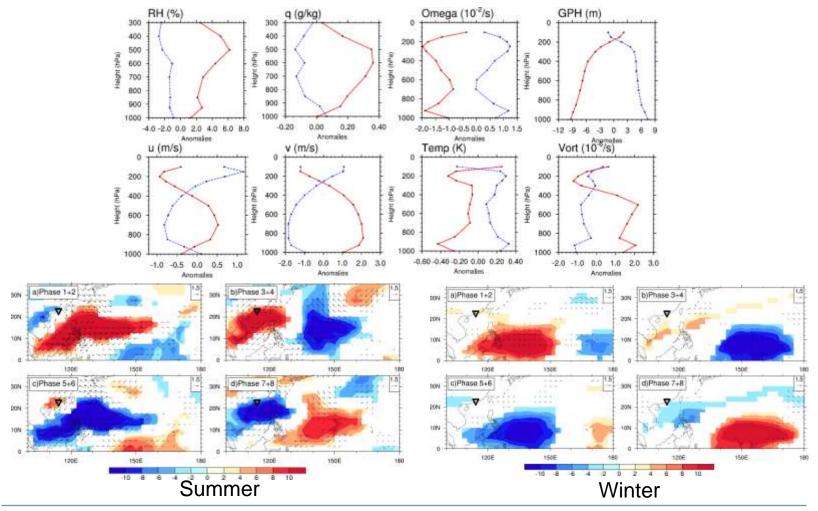
Intraseasonal Oscillation: QBWO (10-20-day) modulation

 $Phase_{QBWO} = tan^{-1} [PC2_{QBWO} / PC1_{QBWO}]$ $Amplitude_{QBWO} = [PC1_{QBWO}^{2} + PC2_{QBWO}^{2}]^{1/2}$

Dominant mode of QBWO modulation

Page 13 | May 25 2017 | CityU

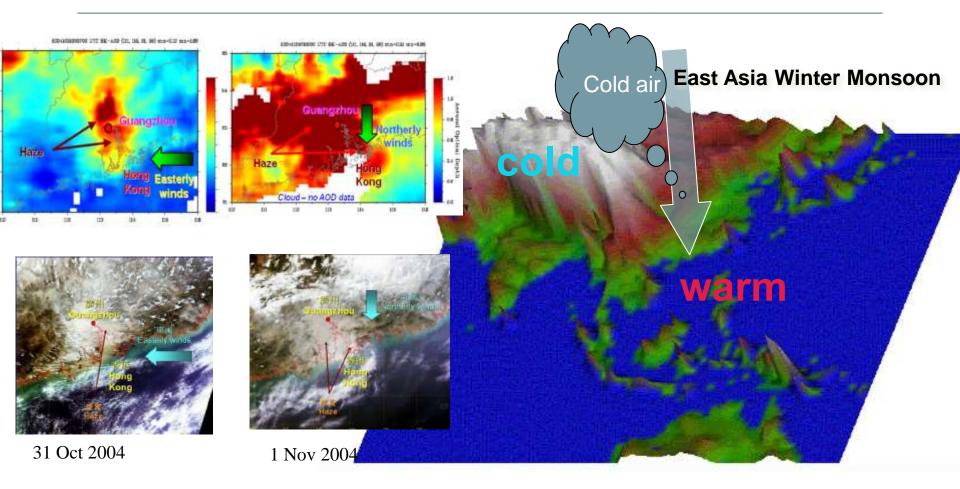
Changes in local visibility and API for different QBWO phases



QBWO	No of hours of reduced visibility per day	No of hours of API > 100 per day (Central)	No of hours of API > 100 per day (Mongkok)	No of hours of API > 100 per day (Causeway Bay)	
Phase 1+2	0.16	0	0	0	
Phase 3+4	0.97	0.82	0.73	0.60	Summer
Phase 5+6	2.44	1.76	1.38	1.05	Summer
Phase 7+8	1.82	0.90	0.58	0.32	
Climatology	1.59	0.97	0.91	0.36	
QBWO	No of hours of reduced visibility per day	No of hours of API > 100 per day (Central)	No of hours of API > 100 per day (Mongkok)	No of hours of API > 100 per day (Causeway Bay)	
Phase 1+2	5.07	2.02	1.28	1.48	
Phase 3+4	6.58	3.16	2.14	2.56	
Phase 5+6	5.95	1.11	0.45	1.06	Winter
Phase 7+8	6.26	1.08	0.16	0.75	willei
Climatology	6.48	1.79	0.98	1.43	

Page 14 | May 25 2017| CityU

QBWO modulation in summer


Vertical profiles of 10–30-day filtered anomalies of relative humidity (RH), specific humidity (q), omega, geopotential height (GPH), zonal wind (u), meridional wind (v), temperature (temp), and relative vorticity (Vort) for **QBWO phase 1+2 (red lines)** and **phase 5+6 (blue lines) in summer**

Page 15 | May 25 2017 | CityU

- The two dominant modes of the ISO (MJO & QBWO) both contribute significantly to visibility variation in Hong Kong by modulating the associated atmospheric circulations
- In summer, local visibility and air quality are found to be significantly affected by the MJO and QBWO through modulating the associated atmospheric circulations
- ➤ In winter, the modulation effects appear to be weaker due to the southward shift of the MJO-related and QBWO-related convection.

Discussion: Cold air brings more pollutants to Hong Kong

- The passage of a cold front can transport regional pollutants from the north, causing deterioration in local visibility in winter (Wang et al. 2003)
- The midlatitude intraseasonal signals might be the key factor in visibility modulation in winter

Thank You!