

專業 創新 胸懷全球 Professional · Creative For The World

A new air monitoring system assessment and application

—— a case study of source identification in local area

Prepared by Peng Wei School of Energy and Environment

Content

- 1 Introduction of the system
- 2 Data completeness&validity
- 3 Results and applications
- 4 Conclusion

1.1 System introduction

	Accuracy
pDR- 1500	±5%
OEM- 106-L	±2%
RM Young 09101	±1%

1.2 System deployment in Hong Kong

Village Green Project

2.1 Data completeness and influence factor

- The VGP system working power supply is a solar panel which supplies relatively stable voltage (11.5~14.5 V) for the whole system.
- The VGP system working voltage has direct relationship with solar-radiation (*R*² = 0.79) other than sun-shinetime (*R*² = 0.54).

2.2 Data validity

- The calibration lasted for 2 hours, each point represented 5-min average.
- The O₃ calibrated with stand gas by steps from 0 to 200 ppb, while PM_{2.5} were calibrated siteby-site with reference instruments.

3.1 Results and comparison

	VGP avg	EPD avg	Ratio	R ²
PM _{2.5} (ug/m³)	26	18	1.37	0.74
O ₃ (ppb)	32	48	0.65	0.76

- Both PM_{2.5} and O₃ show good trend with EPD measurements.
- PM_{2.5} shows opposite comparison trend with O₃, while PM_{2.5} nearly always higher levels in VGP site than EPD, and presented unstable ratio fluctuation relative to O₃, which indicates some unconstant pollution sources nearby VGP site.

3.2 Methodology

1 Nonparametric Regression Model (NPR)

$$-C(\theta) = \frac{\sum_{i=1}^{n} K((\theta - W_i)/w)C_i}{K((\theta - W_i)/w)} \tag{1}$$

$$-K(x) = 0.75(1 - x^2) \quad |x| \le 1 \tag{2}$$

2 Nonparametric Trajectory Analysis (NTA)

2.1 Back-trajectory calculation

$$y_k(t_i) = \sum_{i=0}^k v_{\mathcal{V}}(t_{i-i}) \Delta t, \quad k=1,...,N \quad (4)$$

2.2 NTA calculation

$$(X,Y) = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} K((X-x_{ij})/h)K((Y-y_{ij})/h)C_{j}}{\sum_{i=1}^{m} \sum_{j=1}^{n} K((X-x_{ij})/h)K((Y-y_{ij})/h)} \left(5\right)$$

3.3 Wind-rose and NPR results

3.4 South East New Territories (SENT) landfill

Air Pollutant	Background Concentration (ug/m ⁻³)
Total Suspended Particulates (TSP)	78
Respirable Suspended Particulates (RSP)	57(33)
Nitrogen Dioxide (NO ₂)	66
Sulphur Dioxide (SO ₂)	18
Carbon Monoxide (CO)	1,294
Benzene	2.1

3.4 NTA model source identification

- The trajectories were 2-hour calculation.
- PM_{2.5} concentrations corresponding to wind direction which faced wall were replaced with monthly average.

Conclusion and expectation

- The VGP project deployment in Hong Kong prove the ability of low-cost air pollution measurement system in a community environment, and supply long-term credible measurements with high completeness which can be estimated based on the geographical location.
- A receptor-oriented model NPR were introduced for identifying pollution sources. Further, the model were calculated with back trajectories and estimated pollution sources quantitatively.
- The model still have some limitations, while can be improved with methods in the future, such as deploys multiple system in one area for simultaneous measurements as a network.