Source Apportionment of PM_{2.5} During Haze and Non-haze in Kuala Lumpur Urban Environment Nor Azura Sulong¹, Mohd Talib Latif¹, Md Firoz Khan¹, Norhaniza Amil², Matthew J. Ashfold³, Muhammad Ikram Abdul Wahab¹, Kok Meng Chan¹, Mazrura Sahani¹ ¹Universiti Kebangsaan Malaysia ²Universiti Sains Malaysia ³University of Nottingham (Malaysia Campus) ## Atmosphere Investigation #### Introduction Biomass burning in Southeast Asia Southeast Asia Ichoku and Kahn (2012) #### Kuala Lumpur Hazy Condition - $PM_{2.5} \ge 35 \ \mu g \ m^{-3}$ - Visibility < 10 km - Dry/Low humidity SOLAR RADIATION #### Trigger to Biomass Burning In South East Asia biomass burning has become a traditional method of clearing land in the practice of shifting cultivation, which involves field rotation and the slashing and burning of a new plot of land once the existing plot has lost its fertility #### Biomass Burning from Peat Soil Combustion ## Haze: Bad new folks! Sumatra hotspots double to 118 on Saturday JUNE 23, 2013 BY ADMIN | LEAVE A COMMENT Smouldering High amount of soot and smoke!! Flaming Smouldering #### Wind Direction – Southwest Monsoon The National University #### Trigger to Biomass Burning El Ni[~]no-Southern Oscillation (ENSO) event have repeatedly created conditions that make even rainforest susceptible to wildfires. #### El-Niño and La-Niña ### Research Objectives - To determine the concentrations of PM_{2.5} in Kuala Lumpur and its inorganic compositions during pre-haze, haze and post-haze periods. - To predict the PM_{2.5} concentration transported towards Kuala Lumpur using Numerical Atmospheric-dispersion Modelling Environment (NAME) together with the Global Fire Assimilation System (GFAS). - To apportion possible sources of PM_{2.5} using Positive Matrix Factorisation (PMF). - To estimate the carcinogenic and non-carcinogenic health risks among specific age groups during pre-haze, haze and post-haze episodes. #### **Study Location** ### Sampling Site - Kuala Lumpur located within the Klang Valley and situated in the middle of the west coast of the Malaysian Peninsular. - In 2015, Kuala Lumpur had an estimated population of 1.78 million people in an area of just 243 km² with an average annual population growth rate of 2.4% (DOSM, 2016). - The PM_{2.5} aerosol sampling was conducted on the rooftop (30 m above ground level) of a building within the compound of Universiti Kebangsaan Malaysia Kuala Lumpur's campus. ### PM_{2.5} Sampling - Tisch HVS PM_{2.5} - Flowrate of 1.13 m³ min⁻¹ - 24 h sampling/filter - Quartz filter [Whatman QM-A; 8' X 10'] - June 2015– January 2016 - Nine samples per month ## Atmosphere Investigation #### **Backward Trajectories** - Numerical Atmospheric-dispersion Modelling Environment (NAME), a Lagrangian particle dispersion model, produced by the United Kingdom's Met Office's. - The backward trajectories started at the latitudelongitude coordinates of the measurement site in Kuala Lumpur within an altitude range of 0 – 100 m and ran for 5 days. ### Modelled PM_{2.5} concentration - Global Fire Assimilation System (GFAS) PM_{2.5} emissions data. - This dataset relies on fire radiative power (FRP) observations obtained from the Terra and Aqua satellites Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. - Combination of emission sensitivities derived from NAME with the GFAS emissions - modelled PM_{2.5} concentration ### Modelled PM_{2.5} concentration Combination of emission sensitivities derived from NAME with the GFAS emissions - modelled PM_{2.5} concentration Mass/cubic meter (µg m⁻³) = Emission sensitivities (s m^{-1}) x GFAS emissions (g m^{-2} s⁻¹) x 10^6 (µg g⁻¹) #### Source Apportionment of PM_{2.5} • Positive Matrix Factorization (PMF) 5.0 model from the United States Environmental Protection Agency (US EPA). #### Other Air Pollutants and Meteorological Data - Temperature, rainfall, relative humidity, visibility, wind speed and wind direction (MetMalaysia Petaling Jaya station, 9 km from the sampling station) - Air Pollution Index (API) data was collected from Malaysian DOE (Batu Muda Station, 6 km from the sampling site) #### Carcinogenic Metal Health Risk Lifetime average daily dose (LADD) (μ gkg⁻¹day⁻¹) = $\frac{C \times IR \times ED \times EF}{BW \times AT}$ C = Concentration of the contaminant in the atmosphere (ng m⁻³), IR = inhalation rate (m³ day⁻¹) ED = exposure duration (years) EF = exposure frequency (day year⁻¹) BW = body weight (kg) AT = averaging time (70 years x 365 days). Excess lifetime cancer risk (ELCR Inhalation) = LADD × inhalation unit risk (µg m⁻³)⁻¹ #### Non-Carcinogenic Metal Health Risk Average daily dose (mgkg⁻¹day⁻¹) = $$\frac{C \times IR \times ED \times EF}{BW \times AT}$$ Hazard quotients (HQ) = ADD/RfC ADD = average daily dose RfC = reference concentration $$HI = \sum HQ$$ If the HQ \leq 1, it is believed that there is no risk of developing non-cancer health effects. Non-cancer effects may occur if the HQ > 1. An adverse effect is deemed more likely to occur if the HQ value is larger. ## Exposure factors for calculating the exposure dose in health risk assessment | EP | Unit | Infant | Toddler | Children | Adolescent | Adult | |-----|-------------------------|------------------------------------|-----------|------------|-------------|-------------| | | | 0-<1year | 1-<6years | 6-<12years | 12-<18years | 18-<70years | | IR | m³ day-1 | 5.4 | ۵ | 12 | 15.7 | 15.7 | | ED | years | 3. 4
1 | 5 | 6 | 6 | 52 | | EF | days year ⁻¹ | 60 ^a , 305 ^b | 60, 305 | 60, 305 | 60, 305 | 60, 305 | | BW* | kg | 7 | 15 | 31.2 | 38 | 66 | | AT | years | 70**, 1*** | 70, 5 | 70, 6 | 70, 6 | 70, 52 | ^{*} Adapted from National Health and Morbidity Survey III 2006 (NHMS III, 2008) a exposure factors of haze episode b exposure factors of non-haze episode ^{**} AT for carcinogens (fixed at 70 years of exposure) ^{***} AT for non-carcinogens (average years of exposure) #### Measured HVS PM_{2.5} vs Predicted NAME-GFAS PM_{2.5} #### Average PM_{2.5} Concentration #### **Emission Sensitivity and Emission** #### Visibility and API Index #### Other Meteorological Data #### PM_{2.5} Inorganic Composition #### Source Apportionment -Overall #### Source Apportionment –Pre-haze #### Source Apportionment –Haze #### Source Apportionment –Post-Haze #### Hazard index (HI) and hazard quotient (HQ) | Elements | RfC (mg m ⁻³) | | | | | | |-----------|---------------------------|-----------------------|-----------------------|------------------------|---------------------------|-----------------------| | | | Infant
0-<1year | Toddler
1-<6years | Children
6-<12years | Adolescent
12-<18years | Adult
18-<70years | | Pre-haze | | | | | | | | Cr | 8.00×10^{-6} | 1.10×10^{0} | 8.59×10^{-1} | 5.50×10^{-1} | 5.91×10^{-1} | 3.40×10^{-1} | | Mn | 5.00×10^{-5} | 3.60×10^{-2} | 2.80×10^{-2} | 1.80×10^{-2} | 1.93×10^{-2} | 1.11×10^{-2} | | Ni | 2.00×10^{-4} | 5.70×10^{-3} | 4.46×10^{-3} | 2.86×10^{-3} | 3.07×10^{-3} | 1.77×10^{-3} | | Cd | 1.00×10^{-5} | 9.67×10^{-3} | 7.52×10^{-3} | 4.82×10^{-3} | 5.18×10^{-3} | 2.98×10^{-3} | | As | 5.00×10^{-5} | 6.57×10^{-3} | 5.11×10^{-3} | 3.28×10^{-3} | 3.52×10^{-3} | 2.03×10^{-3} | | ∑HI | | 1.16 | 0.90 | 0.58 | 0.62 | 0.36 | | Haze | | | | | | | | Cr | 8.00×10^{-6} | 1.02×10^{0} | 7.93×10^{-1} | 5.08×10^{-1} | 5.46×10^{-1} | 3.14×10^{-1} | | Mn | 5.00×10^{-5} | 2.94×10^{-2} | 2.29×10^{-2} | 1.47×10^{-2} | 1.58×10^{-2} | 9.07×10^{-3} | | Ni | 2.00×10^{-4} | 3.51×10^{-3} | 2.73×10^{-3} | 1.75×10^{-3} | 1.88×10^{-3} | 1.08×10^{-3} | | Cd | 1.00×10^{-5} | 2.79×10^{-3} | 2.17×10^{-3} | 1.39×10^{-3} | 1.49×10^{-3} | 8.60×10^{-4} | | As | 5.00×10^{-5} | 2.81×10^{-3} | 2.19×10^{-3} | 1.40×10^{-3} | 1.51×10^{-3} | 8.68×10^{-4} | | ∑HI | | 1.06 | 0.82 | 0.53 | 0.57 | 0.33 | | Post-haze | | | | | | | | Cr | 8.00×10^{-6} | 5.87×10^{-1} | 4.57×10^{-1} | 2.93×10^{-1} | 3.15×10^{-1} | 1.81×10^{-1} | | Mn | 5.00×10^{-5} | 4.53×10^{-2} | 3.52×10^{-2} | 2.26×10^{-2} | 2.42×10^{-2} | 1.40×10^{-2} | | Ni | 2.00×10^{-4} | 3.67×10^{-3} | 2.86×10^{-3} | 1.83×10^{-3} | 1.97×10^{-3} | 1.13×10^{-3} | | Cd | 1.00×10^{-5} | 8.38×10^{-3} | 6.52×10^{-3} | 4.18×10^{-3} | 4.49×10^{-3} | 2.58×10^{-3} | | As | 5.00×10^{-5} | 5.29×10^{-3} | 4.11×10^{-3} | 2.63×10^{-3} | 2.83×10^{-3} | 1.63×10^{-3} | | ∑HI | | 0.65 | 0.51 | 0.32 | 0.35 | 0.20 | | ΣHI | Haze | 1.06 | 0.82 | 0.53 | 0.57 | 0.33 | | ΣHI | Non-haze* | 0.91 | 0.71 | 0.45 | 0.49 | 0.28 | Excess lifetime cancer risks (ELCR) of carcinogenic | Eleme | ents IUR | Excess lifetime cancer risk (µg m ⁻³) ⁻¹ | | | | | |---------------------|-------------------------------------|---|-------------------------|-------------------------|---------------------------|-------------------------| | | (μg m ⁻³) ⁻¹ | Infant
0-<1 year | Toddler
1-<6years | Children
6-<12years | Adolescent
12-<18years | Adult
18-<70years | | Pre-h | aze | | | | | | | Pb | 1.20×10^{-5} | 7.53×10^{-10} | 2.93×10^{-9} | 2.25×10^{-9} | 2.42×10^{-9} | 1.21×10^{-8} | | Cd | 1.80×10^{-3} | 2.49×10^{-9} | 9.67×10^{-9} | 7.44×10^{-9} | 8.00×10^{-9} | 4.00×10^{-8} | | Cr | 1.20×10^{-2} | 1.51×10^{-6} | 5.89×10^{-6} | 4.53×10^{-6} | 4.86×10^{-6} | 2.43×10^{-5} | | Ni | 2.40×10^{-4} | 3.93×10^{-9} | 1.53×10^{-8} | 1.18×10^{-8} | 1.26×10^{-8} | 6.31×10^{-8} | | As | 4.30×10^{-3} | 2.02×10^{-8} | 7.85×10^{-8} | 6.04×10^{-8} | 6.49×10^{-8} | 3.24×10^{-7} | | Co | 9.00×10^{-3} | 1.41×10^{-8} | 5.48×10^{-8} | 4.22×10^{-8} | 4.53×10^{-8} | 2.26×10^{-7} | | Σ | | 1.56×10^{-6} | 6.05×10^{-6} | 4.65×10^{-6} | 5.00×10^{-6} | 2.49×10^{-5} | | Haze | | | | | | | | Pb | 1.20×10^{-5} | 1.50×10^{-10} | 5.83×10^{-10} | 4.49×10^{-10} | 4.82×10^{-10} | 2.41×10^{-9} | | Cd | 1.80×10^{-3} | 7.17×10^{-10} | 2.79×10^{-9} | 2.15×10^{-9} | 2.31×10^{-9} | 1.15×10^{-8} | | Cr | 1.20×10^{-2} | 1.40×10^{-6} | 5.44×10^{-6} | 4.18×10^{-6} | 4.49×10^{-6} | 2.24×10^{-5} | | Ni | 2.40×10^{-4} | 2.41×10^{-9} | 9.37×10^{-9} | 7.21×10^{-9} | 7.74×10^{-9} | 3.86×10^{-8} | | As | 4.30×10^{-3} | 8.65×10^{-9} | 3.36×10^{-8} | 2.59×10^{-8} | 2.78×10^{-8} | 1.39×10^{-7} | | Co | 9.00×10^{-3} | 5.38×10^{-9} | 2.09×10^{-8} | 1.61×10^{-8} | 1.73×10^{-8} | 8.63×10^{-8} | | Σ | | 1.42×10^{-6} | 5.50×10^{6} | 4.23×10^{-6} | 4.55×10^{-6} | 2.27×10^{-5} | | Post-l | naze | | | | | | | Pb | 1.20×10^{-5} | 4.91×10^{-10} | 1.91×10^{-9} | 1.47×10^{-9} | 1.58×10^{-9} | 7.87×10^{-9} | | Cd | 1.80×10^{-3} | 2.15×10^{-9} | 8.38×10^{-9} | 6.45×10^{-9} | 6.92×10^{-9} | 3.46×10^{-8} | | Cr | 1.20×10^{-2} | 8.06×10^{-7} | 3.13×10^{-6} | 2.41×10^{-6} | 2.59×10^{-6} | 1.29×10^{-5} | | Ni | 2.40×10^{-4} | 2.52×10^{-9} | 9.80×10^{-9} | 7.54×10^{-9} | 8.10×10^{-9} | 4.04×10^{-8} | | As | 4.30×10^{-3} | 1.62×10^{-8} | 6.31×10^{-8} | 4.86×10^{-8} | 5.22×10^{-8} | 2.60×10^{-7} | | Co | 9.00×10^{-3} | 8.29×10^{-9} | 3.22×10^{-8} | 2.48×10^{-8} | 2.66×10^{-8} | 1.33×10^{-7} | | $\frac{\sum}{\sum}$ | CD II | 8 35 × 10 ⁻⁷ | 3 25 × 10 ⁻⁶ | 2 50 × 10 ⁻⁶ | 2 68 × 10 ⁻⁶ | 1 34 × 10 ⁻⁵ | | $\sum EL$ | | 1.42×10^{-6} | 5.50×10^{-6} | 4.23×10^{-6} | 4.55×10^{-6} | 2.27×10^{-5} | | $\sum EL$ | CR Non-haze* | 1.20×10^{-6} | 4.65×10^{-6} | 3.58×10^{-6} | 3.84×10^{-6} | 1.92×10^{-5} | #### Atmosphere Investigation #### Conclusion - PM_{2.5} mass collected during pre-haze (24.5±12.0 μg m⁻³), haze (72.3±38.0 μg m⁻³), and post-haze (14.3±3.58 μg m⁻³ events in Kuala Lumpur were significantly different (*p* < 0.005) - The highest concentration of PM_{2.5} during haze episode 5 times higher than WHO guidelines, 3.9 times higher than the US EPA standards and 1.8 times higher than the Malaysian Ambient Air Quality Standards 2015 (IT-1) - The concentration of $PM_{2.5}$ recorded during the haze episode had a good correlation with the Malaysian Air Pollutants Index (API) (r = 0.466; p < 0.05) and significantly reduce the visibility (r = -0.631; p = 0.005). ### Conclusion - The SIA (SO₄²⁻, NO₃⁻ and NH₄⁺) dominated the composition of PM_{2.5} contribute to 43% inorganic composition of PM_{2.5} mass during haze compared to pre-haze and post-haze, where they only contributed 12% and 16%, respectively. - The overall dominant sources of PM_{2.5} in Kuala Lumpur urban environment were SIA and biomass burning (38.5%); and traffic emission (22.4%). ### Conclusion - The non-carcinogenic health risk assessment infant group faced more significant health risk than the other age groups during haze (HI = 1.06). - The carcinogenic health risk assessment adult group is the most affected group for haze exposure (ECLR= 2.27 x 10⁻⁵) - The lowest ELCR estimation was posed by the infant group during non-haze (1.20×10^{-6}) indicating that 1-2 individuals in 1,000,000 are likely to develop cancer in their lifetime due to exposure of urban $PM_{2.5}$ aerosols. #### Further reading.... Science of the Total Environment xxx (2017) xxx-xxx Contents lists available at ScienceDirect #### Science of the Total Environment journal homepage: www.elsevier.com Source apportionment and health risk assessment among specific age groups during haze and non-haze episodes in Kuala Lumpur, Malaysia Nor Azura Sulong^a, Mohd Talib Latif^{a, b, *}, Md Firoz Khan^c, Norhaniza Amil^d, Matthew J. Ashfold^e, Muhammad Ikram Abdul Wahab^f, Kok Meng Chan^f, Mazrura Sahani^f - School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Sciangor, Malaysia - b Institute for Environment and Development (Lestari), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia - Centre for Tropical Climate Change System, Institute for Climate Change, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia - ^d Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia - School of Environmental and Geographical Sciences, University of Nortingham Malaysia Campus, 43500 Semenyih, Selangor, Malaysia - f Environmental Health and Industrial Safety Program, School of Diagnostic Science and Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia #### ARTICLE INFO Article history: Received 9 February 2017 Received in revised form 13 April 2017 Accepted 16 May 2017 Available online xxx Editor: D. Barcelo #### ABSTRACT This study aims to determine PM_{2.5} concentrations and their composition during haze and non-haze episodes in Kuala Lumpur. In order to investigate the origin of the measured air masses, the Numerical Atmospheric-dispersion Modelling Environment (NAME) and Global Fire Assimilation System (GFAS) were applied. Source apportionment of PM_{2.5} was determined using Positive Matrix Factorization (PMF). The carcinogenic and non-carcinogenic health risks were estimated using the United State Environmental Protection Agency (USEPA) method. PM_{2.5} samples were collected from the centre of the city using a high-volume air resolute (EUSE). The results charged that the man PM. concentration collected during the laborated during the laborated during the laborated state. ### Acknowledgement - Universiti Kebangsaan Malaysia- University Research Grants DIP-2016-015 - Ministry of Higher Education Fundamental Research Grant (FRGS/1/2015/WAB03/UKM/01/1). - MetMalaysia and Malaysian's DOE for meteorological and air quality data - United Kingdom's Met Office for NAME Model ### THANK YOU