

Source Apportionment of PM_{2.5} During Haze and Non-haze in Kuala Lumpur Urban Environment

Nor Azura Sulong¹, Mohd Talib Latif¹, Md Firoz Khan¹, Norhaniza Amil², Matthew J. Ashfold³, Muhammad Ikram Abdul Wahab¹, Kok Meng Chan¹, Mazrura Sahani¹

¹Universiti Kebangsaan Malaysia ²Universiti Sains Malaysia ³University of Nottingham (Malaysia Campus)

Atmosphere Investigation

Introduction

Biomass burning in Southeast Asia

Southeast Asia

Ichoku and Kahn (2012)

Kuala Lumpur Hazy Condition

- $PM_{2.5} \ge 35 \ \mu g \ m^{-3}$
- Visibility < 10 km
- Dry/Low humidity

SOLAR RADIATION

Trigger to Biomass Burning

 In South East Asia biomass burning has become a traditional method of clearing land in the practice of shifting cultivation, which involves field rotation and the slashing and burning of a new plot of land once the existing plot has lost its fertility

Biomass Burning from Peat Soil Combustion

Haze: Bad new folks! Sumatra hotspots double to 118 on Saturday

JUNE 23, 2013 BY ADMIN | LEAVE A COMMENT

Smouldering
High amount of
soot and smoke!!

Flaming Smouldering

Wind Direction – Southwest Monsoon

The National University

Trigger to Biomass Burning

El Ni[~]no-Southern
 Oscillation (ENSO) event
 have repeatedly created
 conditions that make
 even rainforest
 susceptible to wildfires.

El-Niño and La-Niña

Research Objectives

- To determine the concentrations of PM_{2.5} in Kuala Lumpur and its inorganic compositions during pre-haze, haze and post-haze periods.
- To predict the PM_{2.5} concentration transported towards Kuala Lumpur using Numerical Atmospheric-dispersion Modelling Environment (NAME) together with the Global Fire Assimilation System (GFAS).
- To apportion possible sources of PM_{2.5} using Positive Matrix Factorisation (PMF).
- To estimate the carcinogenic and non-carcinogenic health risks among specific age groups during pre-haze, haze and post-haze episodes.

Study Location

Sampling Site

- Kuala Lumpur located within the Klang Valley and situated in the middle of the west coast of the Malaysian Peninsular.
- In 2015, Kuala Lumpur had an estimated population of 1.78 million people in an area of just 243 km² with an average annual population growth rate of 2.4% (DOSM, 2016).
- The PM_{2.5} aerosol sampling was conducted on the rooftop (30 m above ground level) of a building within the compound of Universiti Kebangsaan Malaysia Kuala Lumpur's campus.

PM_{2.5} Sampling

- Tisch HVS PM_{2.5}
- Flowrate of 1.13 m³ min⁻¹
- 24 h sampling/filter
- Quartz filter [Whatman QM-A; 8' X 10']
- June 2015– January 2016
- Nine samples per month

Atmosphere Investigation

Backward Trajectories

- Numerical Atmospheric-dispersion Modelling Environment (NAME), a Lagrangian particle dispersion model, produced by the United Kingdom's Met Office's.
- The backward trajectories started at the latitudelongitude coordinates of the measurement site in Kuala Lumpur within an altitude range of 0 – 100 m and ran for 5 days.

Modelled PM_{2.5} concentration

- Global Fire Assimilation System (GFAS) PM_{2.5} emissions data.
- This dataset relies on fire radiative power (FRP)
 observations obtained from the Terra and Aqua
 satellites Moderate Resolution Imaging
 Spectroradiometer (MODIS) instruments.
- Combination of emission sensitivities derived from NAME with the GFAS emissions - modelled PM_{2.5} concentration

Modelled PM_{2.5} concentration

 Combination of emission sensitivities derived from NAME with the GFAS emissions - modelled PM_{2.5} concentration

Mass/cubic meter (µg m⁻³)

= Emission sensitivities (s m^{-1}) x GFAS emissions (g m^{-2} s⁻¹) x 10^6 (µg g⁻¹)

Source Apportionment of PM_{2.5}

• Positive Matrix Factorization (PMF) 5.0 model from the United States Environmental Protection Agency (US EPA).

Other Air Pollutants and Meteorological Data

- Temperature, rainfall, relative humidity, visibility, wind speed and wind direction (MetMalaysia Petaling Jaya station, 9 km from the sampling station)
- Air Pollution Index (API) data was collected from Malaysian DOE (Batu Muda Station, 6 km from the sampling site)

Carcinogenic Metal Health Risk

Lifetime average daily dose (LADD) (μ gkg⁻¹day⁻¹) = $\frac{C \times IR \times ED \times EF}{BW \times AT}$

C = Concentration of the contaminant in the atmosphere (ng m⁻³),

IR = inhalation rate (m³ day⁻¹)

ED = exposure duration (years)

EF = exposure frequency (day year⁻¹)

BW = body weight (kg)

AT = averaging time (70 years x 365 days).

Excess lifetime cancer risk (ELCR Inhalation)

= LADD × inhalation unit risk (µg m⁻³)⁻¹

Non-Carcinogenic Metal Health Risk

Average daily dose (mgkg⁻¹day⁻¹) =
$$\frac{C \times IR \times ED \times EF}{BW \times AT}$$

Hazard quotients (HQ) = ADD/RfC

ADD = average daily dose RfC = reference concentration

$$HI = \sum HQ$$

If the HQ \leq 1, it is believed that there is no risk of developing non-cancer health effects. Non-cancer effects may occur if the HQ > 1.

An adverse effect is deemed more likely to occur if the HQ value is larger.

Exposure factors for calculating the exposure dose in health risk assessment

EP	Unit	Infant	Toddler	Children	Adolescent	Adult
		0-<1year	1-<6years	6-<12years	12-<18years	18-<70years
IR	m³ day-1	5.4	۵	12	15.7	15.7
ED	years	3. 4 1	5	6	6	52
EF	days year ⁻¹	60 ^a , 305 ^b	60, 305	60, 305	60, 305	60, 305
BW*	kg	7	15	31.2	38	66
AT	years	70**, 1***	70, 5	70, 6	70, 6	70, 52

^{*} Adapted from National Health and Morbidity Survey III 2006 (NHMS III, 2008)

a exposure factors of haze episode

b exposure factors of non-haze episode

^{**} AT for carcinogens (fixed at 70 years of exposure)

^{***} AT for non-carcinogens (average years of exposure)

Measured HVS PM_{2.5} vs Predicted NAME-GFAS PM_{2.5}

Average PM_{2.5} Concentration

Emission Sensitivity and Emission

Visibility and API Index

Other Meteorological Data

PM_{2.5} Inorganic Composition

Source Apportionment -Overall

Source Apportionment –Pre-haze

Source Apportionment –Haze

Source Apportionment –Post-Haze

Hazard index (HI) and hazard quotient (HQ)

Elements	RfC (mg m ⁻³)					
		Infant 0-<1year	Toddler 1-<6years	Children 6-<12years	Adolescent 12-<18years	Adult 18-<70years
Pre-haze						
Cr	8.00×10^{-6}	1.10×10^{0}	8.59×10^{-1}	5.50×10^{-1}	5.91×10^{-1}	3.40×10^{-1}
Mn	5.00×10^{-5}	3.60×10^{-2}	2.80×10^{-2}	1.80×10^{-2}	1.93×10^{-2}	1.11×10^{-2}
Ni	2.00×10^{-4}	5.70×10^{-3}	4.46×10^{-3}	2.86×10^{-3}	3.07×10^{-3}	1.77×10^{-3}
Cd	1.00×10^{-5}	9.67×10^{-3}	7.52×10^{-3}	4.82×10^{-3}	5.18×10^{-3}	2.98×10^{-3}
As	5.00×10^{-5}	6.57×10^{-3}	5.11×10^{-3}	3.28×10^{-3}	3.52×10^{-3}	2.03×10^{-3}
∑HI		1.16	0.90	0.58	0.62	0.36
Haze						
Cr	8.00×10^{-6}	1.02×10^{0}	7.93×10^{-1}	5.08×10^{-1}	5.46×10^{-1}	3.14×10^{-1}
Mn	5.00×10^{-5}	2.94×10^{-2}	2.29×10^{-2}	1.47×10^{-2}	1.58×10^{-2}	9.07×10^{-3}
Ni	2.00×10^{-4}	3.51×10^{-3}	2.73×10^{-3}	1.75×10^{-3}	1.88×10^{-3}	1.08×10^{-3}
Cd	1.00×10^{-5}	2.79×10^{-3}	2.17×10^{-3}	1.39×10^{-3}	1.49×10^{-3}	8.60×10^{-4}
As	5.00×10^{-5}	2.81×10^{-3}	2.19×10^{-3}	1.40×10^{-3}	1.51×10^{-3}	8.68×10^{-4}
∑HI		1.06	0.82	0.53	0.57	0.33
Post-haze						
Cr	8.00×10^{-6}	5.87×10^{-1}	4.57×10^{-1}	2.93×10^{-1}	3.15×10^{-1}	1.81×10^{-1}
Mn	5.00×10^{-5}	4.53×10^{-2}	3.52×10^{-2}	2.26×10^{-2}	2.42×10^{-2}	1.40×10^{-2}
Ni	2.00×10^{-4}	3.67×10^{-3}	2.86×10^{-3}	1.83×10^{-3}	1.97×10^{-3}	1.13×10^{-3}
Cd	1.00×10^{-5}	8.38×10^{-3}	6.52×10^{-3}	4.18×10^{-3}	4.49×10^{-3}	2.58×10^{-3}
As	5.00×10^{-5}	5.29×10^{-3}	4.11×10^{-3}	2.63×10^{-3}	2.83×10^{-3}	1.63×10^{-3}
∑HI		0.65	0.51	0.32	0.35	0.20
ΣHI	Haze	1.06	0.82	0.53	0.57	0.33
ΣHI	Non-haze*	0.91	0.71	0.45	0.49	0.28

Excess lifetime cancer risks (ELCR) of carcinogenic

Eleme	ents IUR	Excess lifetime cancer risk (µg m ⁻³) ⁻¹				
	(μg m ⁻³) ⁻¹	Infant 0-<1 year	Toddler 1-<6years	Children 6-<12years	Adolescent 12-<18years	Adult 18-<70years
Pre-h	aze					
Pb	1.20×10^{-5}	7.53×10^{-10}	2.93×10^{-9}	2.25×10^{-9}	2.42×10^{-9}	1.21×10^{-8}
Cd	1.80×10^{-3}	2.49×10^{-9}	9.67×10^{-9}	7.44×10^{-9}	8.00×10^{-9}	4.00×10^{-8}
Cr	1.20×10^{-2}	1.51×10^{-6}	5.89×10^{-6}	4.53×10^{-6}	4.86×10^{-6}	2.43×10^{-5}
Ni	2.40×10^{-4}	3.93×10^{-9}	1.53×10^{-8}	1.18×10^{-8}	1.26×10^{-8}	6.31×10^{-8}
As	4.30×10^{-3}	2.02×10^{-8}	7.85×10^{-8}	6.04×10^{-8}	6.49×10^{-8}	3.24×10^{-7}
Co	9.00×10^{-3}	1.41×10^{-8}	5.48×10^{-8}	4.22×10^{-8}	4.53×10^{-8}	2.26×10^{-7}
Σ		1.56×10^{-6}	6.05×10^{-6}	4.65×10^{-6}	5.00×10^{-6}	2.49×10^{-5}
Haze						
Pb	1.20×10^{-5}	1.50×10^{-10}	5.83×10^{-10}	4.49×10^{-10}	4.82×10^{-10}	2.41×10^{-9}
Cd	1.80×10^{-3}	7.17×10^{-10}	2.79×10^{-9}	2.15×10^{-9}	2.31×10^{-9}	1.15×10^{-8}
Cr	1.20×10^{-2}	1.40×10^{-6}	5.44×10^{-6}	4.18×10^{-6}	4.49×10^{-6}	2.24×10^{-5}
Ni	2.40×10^{-4}	2.41×10^{-9}	9.37×10^{-9}	7.21×10^{-9}	7.74×10^{-9}	3.86×10^{-8}
As	4.30×10^{-3}	8.65×10^{-9}	3.36×10^{-8}	2.59×10^{-8}	2.78×10^{-8}	1.39×10^{-7}
Co	9.00×10^{-3}	5.38×10^{-9}	2.09×10^{-8}	1.61×10^{-8}	1.73×10^{-8}	8.63×10^{-8}
Σ		1.42×10^{-6}	5.50×10^{6}	4.23×10^{-6}	4.55×10^{-6}	2.27×10^{-5}
Post-l	naze					
Pb	1.20×10^{-5}	4.91×10^{-10}	1.91×10^{-9}	1.47×10^{-9}	1.58×10^{-9}	7.87×10^{-9}
Cd	1.80×10^{-3}	2.15×10^{-9}	8.38×10^{-9}	6.45×10^{-9}	6.92×10^{-9}	3.46×10^{-8}
Cr	1.20×10^{-2}	8.06×10^{-7}	3.13×10^{-6}	2.41×10^{-6}	2.59×10^{-6}	1.29×10^{-5}
Ni	2.40×10^{-4}	2.52×10^{-9}	9.80×10^{-9}	7.54×10^{-9}	8.10×10^{-9}	4.04×10^{-8}
As	4.30×10^{-3}	1.62×10^{-8}	6.31×10^{-8}	4.86×10^{-8}	5.22×10^{-8}	2.60×10^{-7}
Co	9.00×10^{-3}	8.29×10^{-9}	3.22×10^{-8}	2.48×10^{-8}	2.66×10^{-8}	1.33×10^{-7}
$\frac{\sum}{\sum}$	CD II	8 35 × 10 ⁻⁷	3 25 × 10 ⁻⁶	2 50 × 10 ⁻⁶	2 68 × 10 ⁻⁶	1 34 × 10 ⁻⁵
$\sum EL$		1.42×10^{-6}	5.50×10^{-6}	4.23×10^{-6}	4.55×10^{-6}	2.27×10^{-5}
$\sum EL$	CR Non-haze*	1.20×10^{-6}	4.65×10^{-6}	3.58×10^{-6}	3.84×10^{-6}	1.92×10^{-5}

Atmosphere Investigation

Conclusion

- PM_{2.5} mass collected during pre-haze (24.5±12.0 μg m⁻³), haze (72.3±38.0 μg m⁻³), and post-haze (14.3±3.58 μg m⁻³ events in Kuala Lumpur were significantly different (*p* < 0.005)
- The highest concentration of PM_{2.5} during haze episode 5 times higher than WHO guidelines, 3.9 times higher than the US EPA standards and 1.8 times higher than the Malaysian Ambient Air Quality Standards 2015 (IT-1)
- The concentration of $PM_{2.5}$ recorded during the haze episode had a good correlation with the Malaysian Air Pollutants Index (API) (r = 0.466; p < 0.05) and significantly reduce the visibility (r = -0.631; p = 0.005).

Conclusion

- The SIA (SO₄²⁻, NO₃⁻ and NH₄⁺) dominated the composition of PM_{2.5} contribute to 43% inorganic composition of PM_{2.5} mass during haze compared to pre-haze and post-haze, where they only contributed 12% and 16%, respectively.
- The overall dominant sources of PM_{2.5} in Kuala Lumpur urban environment were SIA and biomass burning (38.5%); and traffic emission (22.4%).

Conclusion

- The non-carcinogenic health risk assessment infant group faced more significant health risk than the other age groups during haze (HI = 1.06).
- The carcinogenic health risk assessment adult group is the most affected group for haze exposure (ECLR= 2.27 x 10⁻⁵)
- The lowest ELCR estimation was posed by the infant group during non-haze (1.20×10^{-6}) indicating that 1-2 individuals in 1,000,000 are likely to develop cancer in their lifetime due to exposure of urban $PM_{2.5}$ aerosols.

Further reading....

Science of the Total Environment xxx (2017) xxx-xxx

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com

Source apportionment and health risk assessment among specific age groups during haze and non-haze episodes in Kuala Lumpur, Malaysia

Nor Azura Sulong^a, Mohd Talib Latif^{a, b, *}, Md Firoz Khan^c, Norhaniza Amil^d, Matthew J. Ashfold^e, Muhammad Ikram Abdul Wahab^f, Kok Meng Chan^f, Mazrura Sahani^f

- School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Sciangor, Malaysia
- b Institute for Environment and Development (Lestari), Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
- Centre for Tropical Climate Change System, Institute for Climate Change, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
- ^d Environmental Technology Division, School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
- School of Environmental and Geographical Sciences, University of Nortingham Malaysia Campus, 43500 Semenyih, Selangor, Malaysia
- f Environmental Health and Industrial Safety Program, School of Diagnostic Science and Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

ARTICLE INFO

Article history:
Received 9 February 2017
Received in revised form 13 April 2017
Accepted 16 May 2017
Available online xxx
Editor: D. Barcelo

ABSTRACT

This study aims to determine PM_{2.5} concentrations and their composition during haze and non-haze episodes in Kuala Lumpur. In order to investigate the origin of the measured air masses, the Numerical Atmospheric-dispersion Modelling Environment (NAME) and Global Fire Assimilation System (GFAS) were applied. Source apportionment of PM_{2.5} was determined using Positive Matrix Factorization (PMF). The carcinogenic and non-carcinogenic health risks were estimated using the United State Environmental Protection Agency (USEPA) method. PM_{2.5} samples were collected from the centre of the city using a high-volume air resolute (EUSE). The results charged that the man PM. concentration collected during the laborated during the laborated during the laborated state.

Acknowledgement

- Universiti Kebangsaan Malaysia- University Research Grants DIP-2016-015
- Ministry of Higher Education Fundamental Research Grant (FRGS/1/2015/WAB03/UKM/01/1).
- MetMalaysia and Malaysian's DOE for meteorological and air quality data
- United Kingdom's Met Office for NAME Model

THANK YOU

