Urban Environments in Asiascience, modelling, policy

- Julian Hunt
- Malaysian Commonwealth Studies Centre Univ of Cambridge, Trinity College,
 Univ Coll London,
- David Carruthers, J Stocker, CERC Ltd
- Y.Aktas UCL
- *Y Fan, Yuguo Li (HKU) (shorter version) Presented may 25, 2017

APPLICATIONS OF RESEARCH ON URBAN ENVIRONMENT -(NOTE; TROPICS & CLIMATE CHANGE)

* ANCST;STGS-URBAN POLLN; HAZARDS –(Reports IN Current scoence, and J Env Science (China))

1. PLANNING ON LOCAL TO GLOBAL SCALES -> (more choices)

(EG WINDS (), POLLUTION, GREEN ENVIRONMENT, BUILDINGS –SATELLITE TOWNS; INDUSTRY, AGRICULTURE, OROGRAPHIC CHANGE – COASTS /HARBOURS)

2. RESILIENCE

(EG HAZARDS (frequencies ,magnitudes) –WINDS , FLOODS, FIRES,TEMPERATURE , SFERICS, Forest Fires,Dust Storms IMPACTS –EG Health ,Transport , -> RECOVERY (Local. global)

3 REDUCE ENVIRONMENTAL EFFECTS FROM URBAN OPERATIONS (people.transport, industry,energy,construction,)

1 GLOBAL POLICY OR JECTIVES - Reduced Temp Rise · Monsoon

Factors in changing urban atmospheric environments

- Growth in population ,use of energy ,land , resources lead to rapid changes on time scale 10years -size,
 - -loss of environmental quality (air, water, ground, nature)- hazards (multiple)
- Urban changes faster than global and regional env. change
 -typical 50years (given global emission scenarios)
- •Note qualitative changes in critical environmental processes with profound effects on urban areas in Asia. .
 - -variability, time periods and patterns of extremes
- jet streams, blocking, global oscillations (temp, wind, precip,
- floods, dust ..)
 - CHANGE IN GLOBAL CARBON EMISSIONS -VIA POLITICS?

MECHANISMS OF CLIMATE CHANGE PRODUCED BY GREEN HOUSE GASES.-

Note regional variations, which have to be considered for urban strategies -

Applying Richardson conflict model to mutual decarbonisation (eg countries 1,2)

```
|Likely (?) future carbon emissions (Q(t))
and investments in carbon energy (IC)
                            o ~ \exp(-\lambda_1 t)
                     o ~ exp (-\lambda_2 t)
```

------ → Time t

Future developments for Urban areas –rising temp over centuries -but carbon emissions decrease (except for high pop growth countries)?

RESEARCH QUESTIONS / METHODS FOR URBAN SCALE

- * GREEN AREAS/INNER CITY AREAS Jakarta SATELLITE CITIES (BENEFIT?)
- * URBAN DATA; DRONES IN STREETS IMPERIAL?, DATA ASSIMILATION IN URBAN AREAS HKUST, HKMO+CERC

GLOBAL SCALE -TEMP RISE, ATM BLOCKING WORSENS ENV EFFECTS IN URBAN AREAS;

MONSOON TRENDS -> LOCAL INCREASE IN INDIA

MOUNTAINS->FLOODS->SURFACE OCEAN TEMP->TC IN URBAN AREAS (?).

Transition convective and gravity current flows in large urban b-layer (no wind-)

YiFan, Y.Li, JH 2017) –use of Lab experiments; shows variable turbulence structure and topology

Topology of convective flow

$$\sum N - \sum S + \left(\sum N' - \sum S'\right) / 2 = 0$$
Divergence

S'
N nodes. S saddle 'S' half saddle
Convergence

Topology of stream lines with weak approach flow

YiFan, et al. Note change in singular points.-affects dispersion.

Mesoscale modelling and data over large cities- Inversion –wrf data assim (Xie Bo et al)

Boun'dy Layer Height H over London

Comparative study HKUST, CERC—demonstrates need to have tall tower For validation. —in London BT tower in centre —typical errors 200-300m,

New data needed for city canyons (?) –use of drones ?

(i) NO MEAN ADVECTION WITH ASYMMETRIC HEATING & CONVECTION (NO CORIOLIS)

Note sensitivity to h/Lmo and gradient of roughness

Weak approach flow with cross flow driven thermal gradients and Coriolis effects downwind.

Ü= CHANGE IN U_O

Surface/profiler data +real time modelling over hills –demo at hk int airport JStocker,PWChan;DC JH 2015)

Urban flows over sloping terrain

- Weak mean flows induced by anisotropic turbulence impinging onto planar and undulating surfaces'
- By K. NAGATA, H. WONG, J. C. R. HUNT, S. G. SAJJADI, P. A. DAVIDSON (J Fluid Mech, vol 556,2006)
- theory/lab expt shows mean flow rising towards tops of hills driven by convective turb => improved local model for Asia?.

Calculation of Concentration in Small/Large Urban Areas -assume quasi-steady winds (Aktas et al)

SMALL ($L_U << h$): pollutants, convection heat q / unit area/sec; dispersion depth l

Outdoor Concentration
$$C_oU(l)$$
 $l \sim qx \sim ql$ $C_o \sim q/U$ Independent of L

Indoor Concentration
$$C_{\rm I} \sim C_{\rm I}$$

$$C_{\rm I} \sim C_{\rm Io} + C_{\rm o}$$

Dominated by indoor sources

DISPERSION MODEL IN STREET CANYON IN CROSS FLOW ABOVE THE BUILDINGS

note Coexp(- #D/(KHY)

Figure 6- Accidental release at (x_s, y_s, z_s) of initial scale L_{se} in a canyon of width d and height H with crosswind, showing how on the Building/Street scale the plume is advected along canyon a distance y_{sH} and then carried downwind in a cloud/plume that initially is skewed (along the street), but far downwind on neighbourhood scale returns to standard Gaussian form. (x_{sH}, y_{sH}) is the location of the virtual source for dispersion over the Neighbourhood scale. Note that vehicles with scale b_v and speed U_v also affect the turbulence.

Air quality and high wind studies: Hong Kong EPD study

- Project for Hong Kong Environmental Protection Department (HK EPD)
- Contracted to develop a high-resolution modelling system that:
 - allows for the tall buildings and deep street canyons in Hong Kong
 - 'nests' within the regional modelling system used by the HK EPD
- ADMS-Urban developed to model
 - Urban Canopy flow
 Three-part velocity profile:
 calculated from parameters
 derived from 3D-buildings data
 using CERC's GIS Tools

Advanced street canyons:

Five-component source:
module inputs from
parameters derived from

3D-buildings & road
location data

Actions and research for Ancst

- 1.More modelling research and measurements on special features of low latitude urban boundary layers -
- 2.Data, models, for special characteristics and variability of local heating, humidity pollution dispersion=> local/adjustable f'casts; regional climate modelling, and applications; hazards, agriculture etc
- 3.-> Special Topic Group –focus(?)on these topics –and joint research with 'high latitude' groups