Urban Meteorology and Climate Conference

Global Precipitation Seasonal Forecast Using Teleconnection Technique

Linghua QIU, Ji CHEN Department of Civil Engineering The University of the Hong Kong

May 25, 2017

CONTENT

- Introduction
- Methodology and Data
- Results
- Conclusions

CONTENT

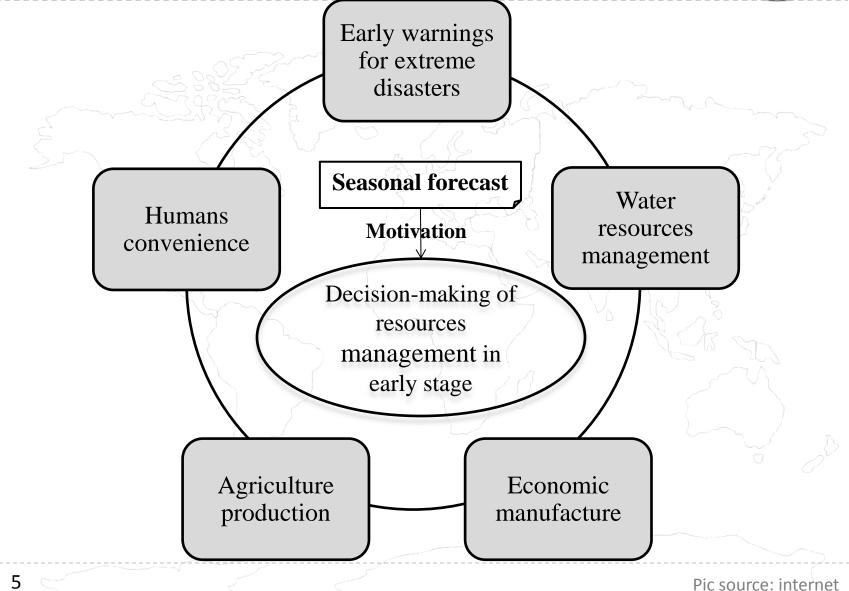
Introduction

- Methodology and Data
- Results
- Conclusions

Introduction

Pic source: internet

Introduction





Introduction

□ The teleconnection technique

Teleconnection: the <u>statistical relationships</u> between the predictand and the predictors in <u>remote regions</u> (climate variability links) (Goddard et al., 2001)

Two different ways: (Chase et al. 2006)

- coherent circulations by air-sea interactions
- disturbances related to those coherent circulations

> Prominent teleconnection patterns (Nigam and Baxter, 2015)

- ENSO (El Niño–Southern Oscillation)
- NAO (North Atlantic Oscillation)
- PNA (Pacific-North American pattern)
- NPO (North Pacific Oscillation)
- Teleconnection relationships offer potential climate predictability (Chase et al., 2006)

Research Hypothesis

Teleconnection associations based on **very few variable**s, even single-variable predictors

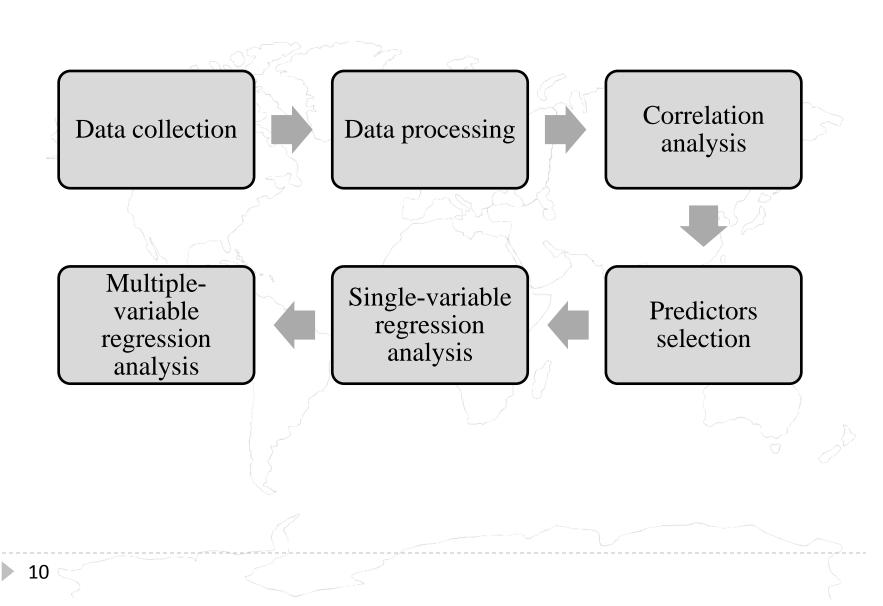
Seasonal rainfall influenced by variables in **all three boundary forcings**, i.e. ocean, atmosphere and land

Assumption: more relevant variables considered for more reasonable precipitation forecasts

More potential variables in **ocean and atmosphere**, even in **land**, selected to investigate teleconnection relationships

CONTENT

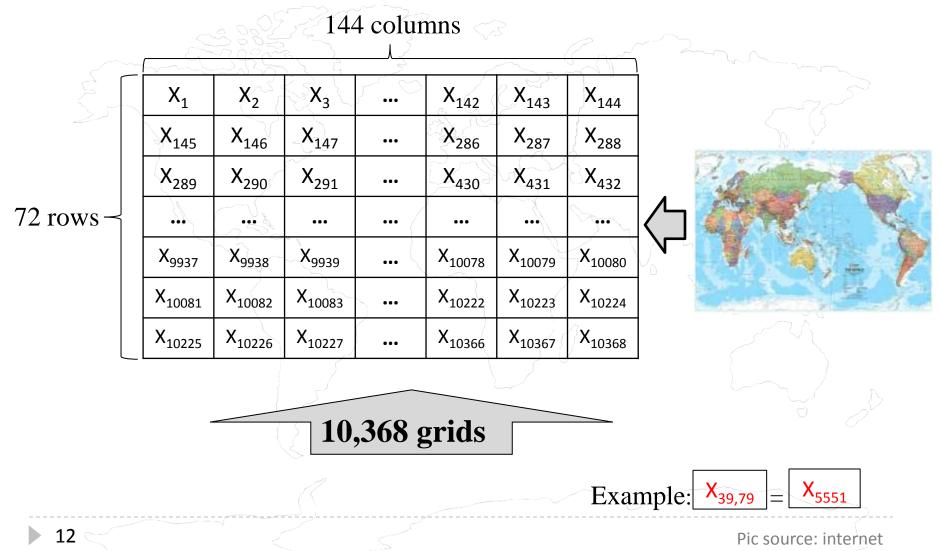
- Introduction
 Methodology and Data
- Results
- Conclusions



Data Collection

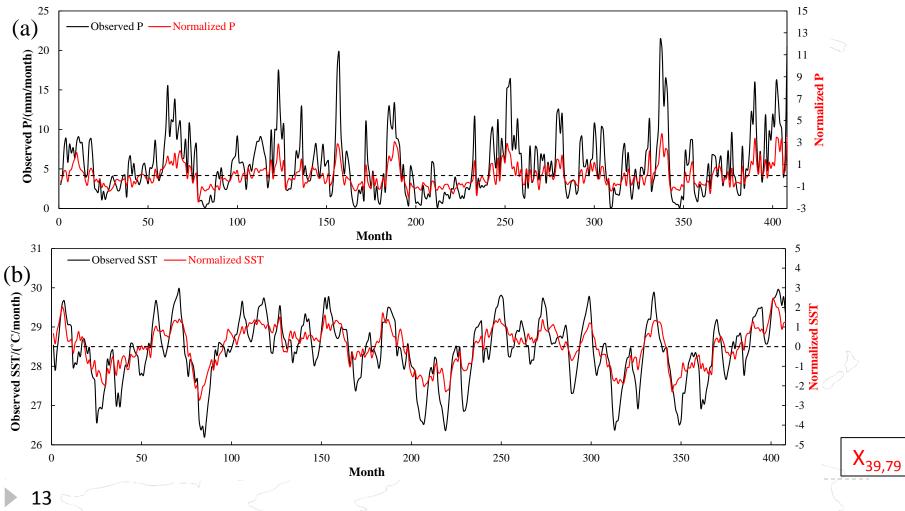
- Precipitation (P)
 - "Global Precipitation Climatology Project (GPCP) Version 2.3 Combined
 - Precipitation Data Set" (01/1979~08/2016)
- Sea surface temperature (SST)
 - "NOAA Optimum Interpolation Sea Surface Temperature V2" (12/1981~12/2016)
- Reanalysis datasets from European Centre for Medium-Range Weather Forecasts (ECMWF) (01/1979~08/2016)
 - Sea level pressure (SLP)
 - Wind speed (V10)
 - Air temperature (T2M)
 - Total column of water (TCW)
 - Total column of liquid water (TCLW)
 - Total column of water vapor (**TCWV**)
 - Humidity
 - Wind shear $(|\mathbf{u}_{850}-\mathbf{u}_{200}|)$ (WISH)
- ➢ Time period: Jan 1982∼Dec 2015
- > Temporal and spatial resolution: Monthly & $2.5^{\circ} \times 2.5^{\circ}$

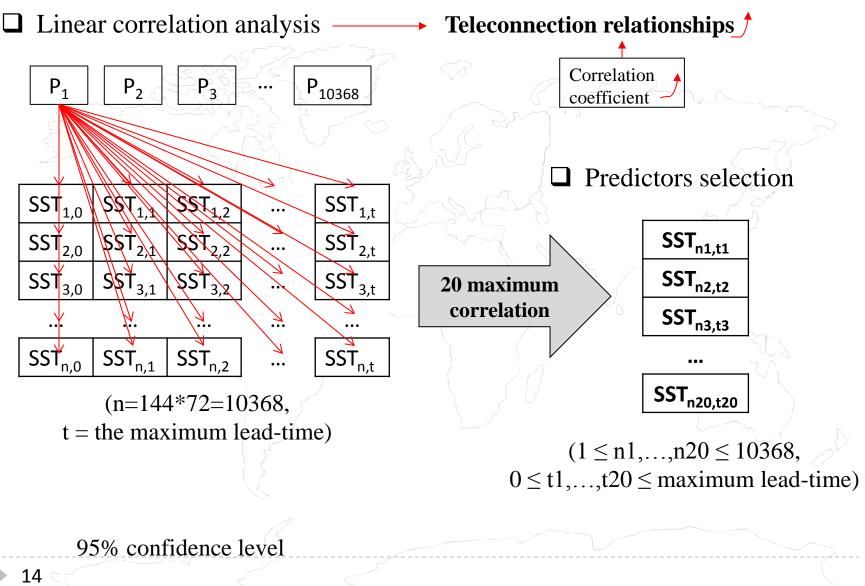
Data Collection

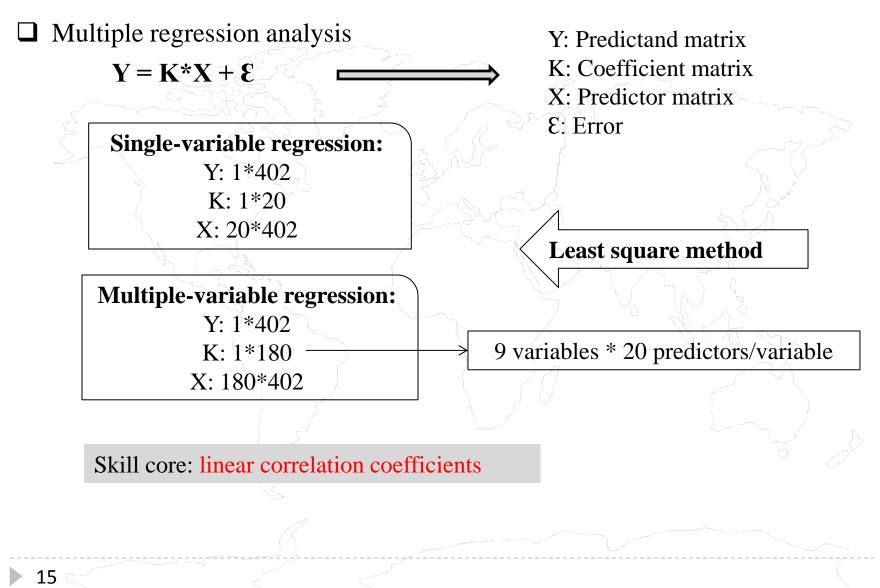


Data processing

Normalized data = (Original data – Monthly mean) / Standard deviation

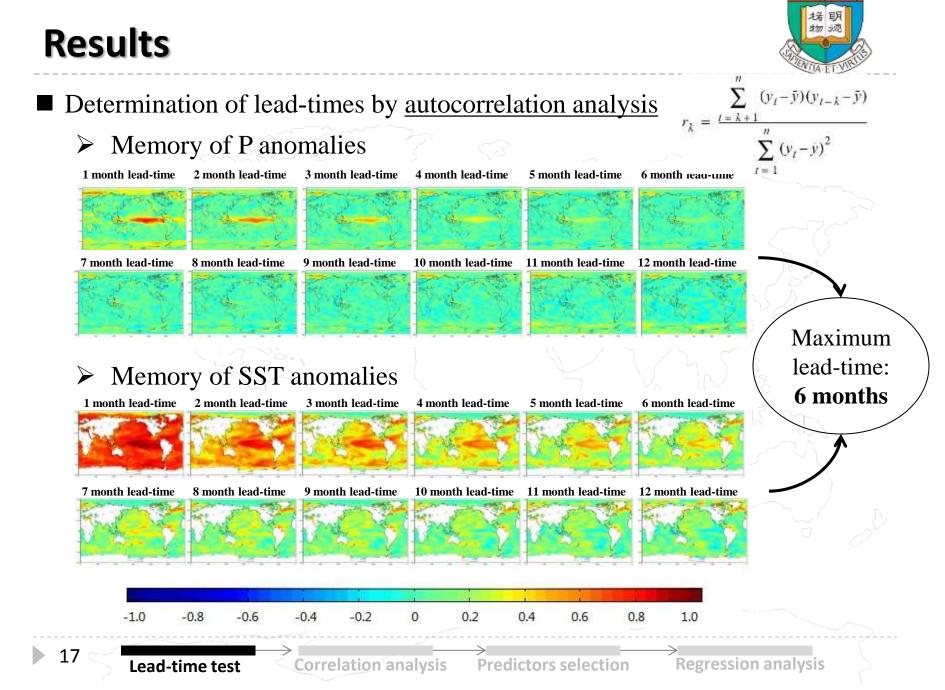


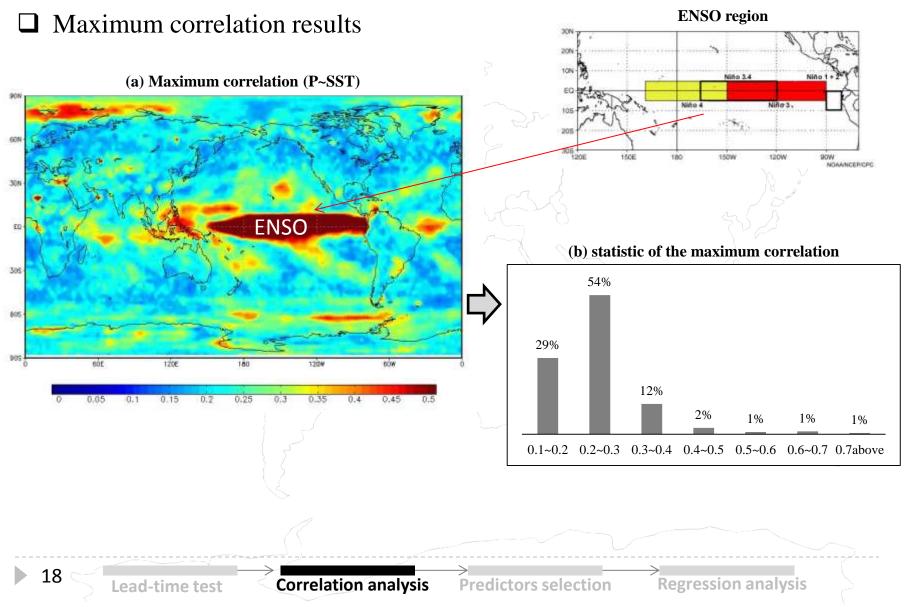




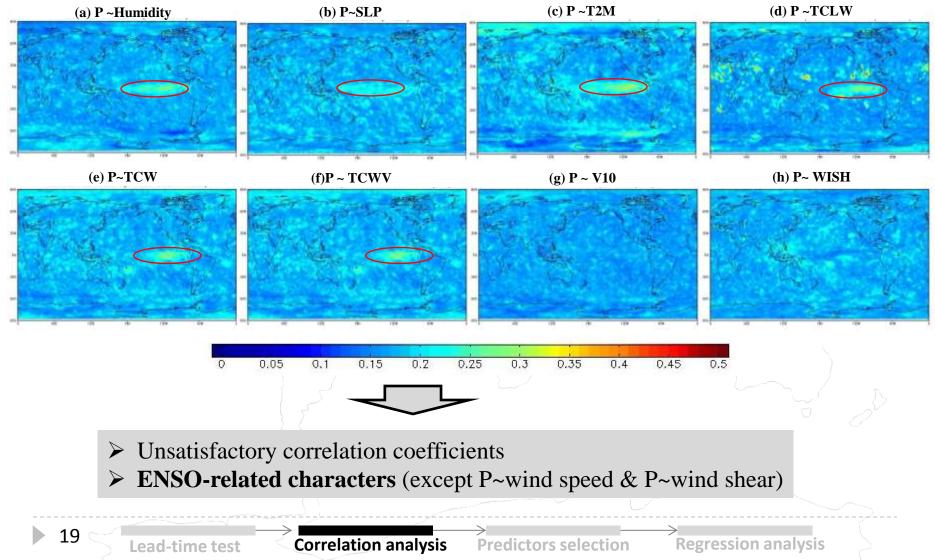
CONTENT

- Introduction
 Methodology and Data
- Results
 - Conclusions



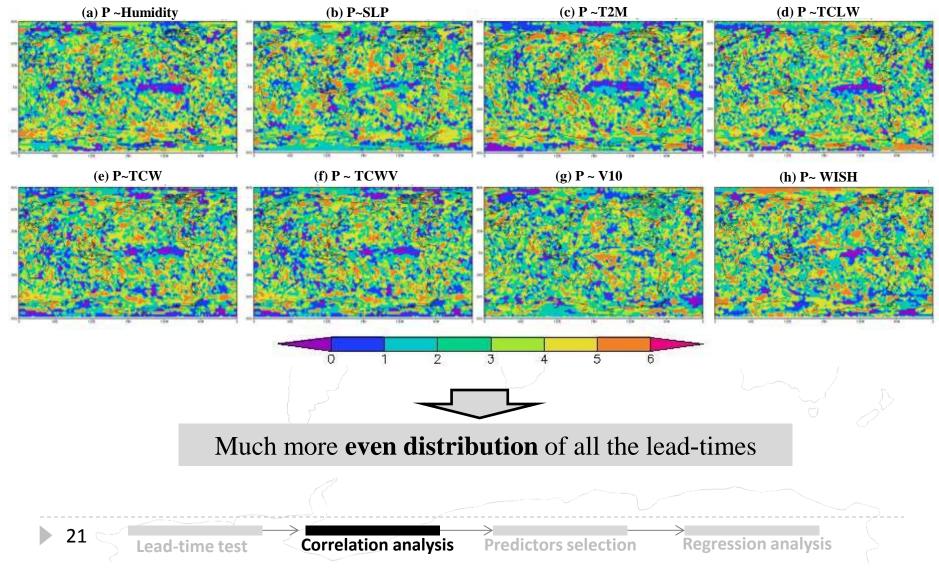


□ Maximum correlation results



- □ Lead-time related to maximum correlation
- (a) $P \sim SST$ \blacktriangleright Most 0~1 month lead-time in **Ocean regions**, especially along the Equator \blacktriangleright Even distribution of other lead-times (b) statistic of lead-times 46% Most frequent occurred: **0 month** \geq lead-time 13% 11% 8% 8% 7% 7% \blacktriangleright Amount of 0 lead-time almost same with that of all other lead-times 0 2 5 1 3 4 6 20 **Correlation analysis Regression analysis Predictors selection** ead-time test

□ Lead-time related to the maximum correlation



□ Predictors selection

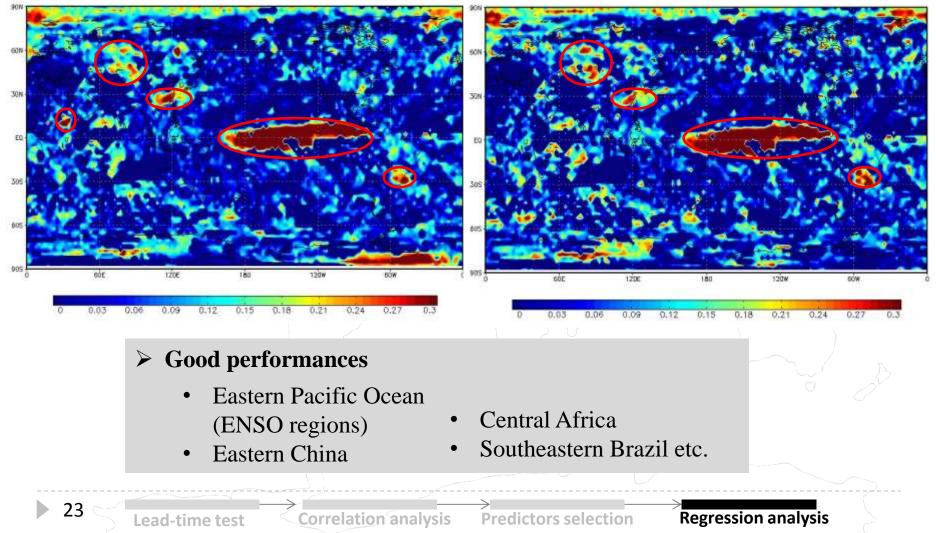
		<u>~</u>	
Position	Lead-time	e Maximum Correlation	_
(38, 81)	0	0.74	
(38, 81)	~1-	<u></u>	
(37, 79)	1	0.72 5	
(37, 79)	0	0.73	
(38, 80)	1	0.71	
(38, 80)	0	0.73	
(37, 77)	1	0.72	
(37, 77)	0	0.72	
(38, 78)	0	0.72	
(38, 78)	1	0.72	
(37, 78)	1	0.72	
<u>(37, 78)</u>	0	0.73	
(38, 79)	0	0.73	
(38, 79)	1	0.71	
(37, 81)	0	0.72	
(38, 82)	0	0.73	
(38, 83)	0	0.72	
(38, 85)	0	0.71	
(38, 84)	0	0.71	
(37, 80)	0	0.72	_



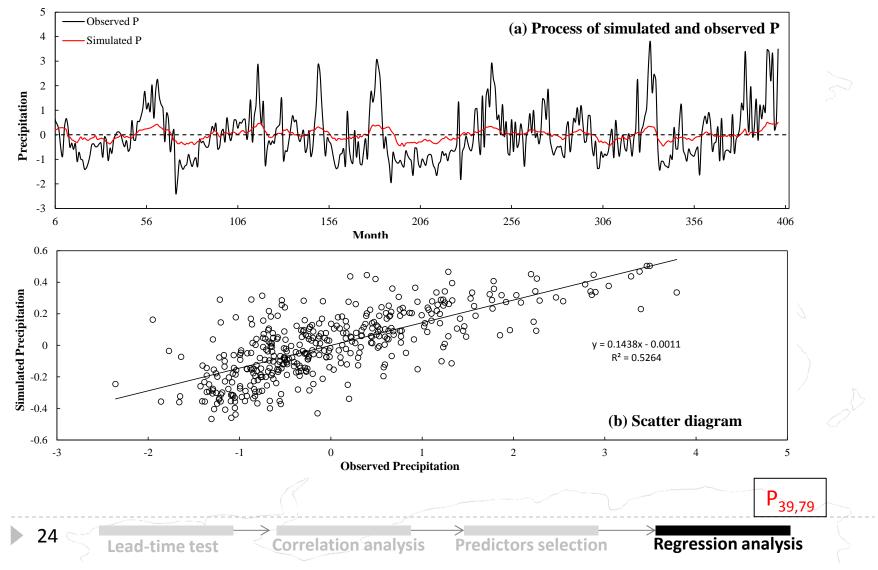
□ Forecast skill of P by regression of single-variable predictors

(a)Forecast skills of monthly P by SST predictors

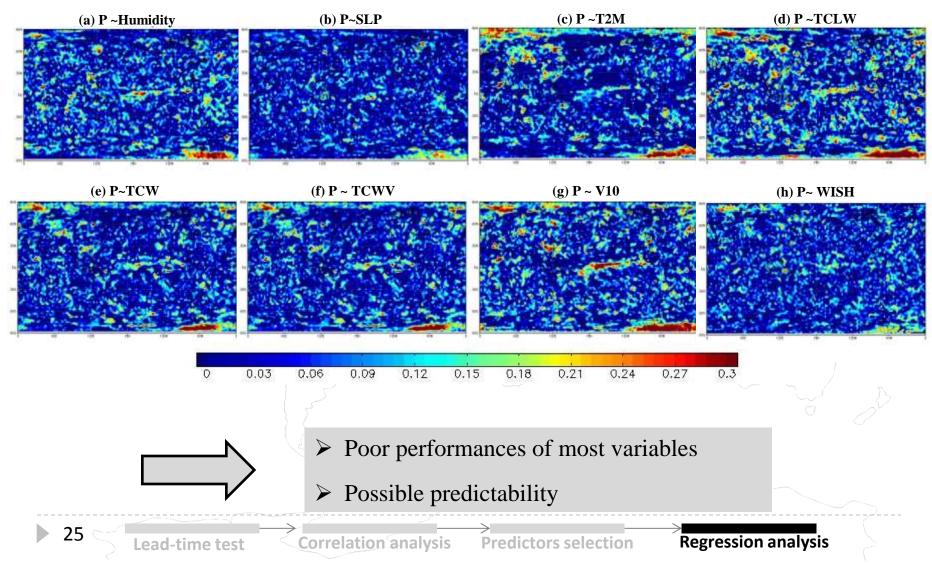
(b)Forecast skills of seasonal P by SST predictors



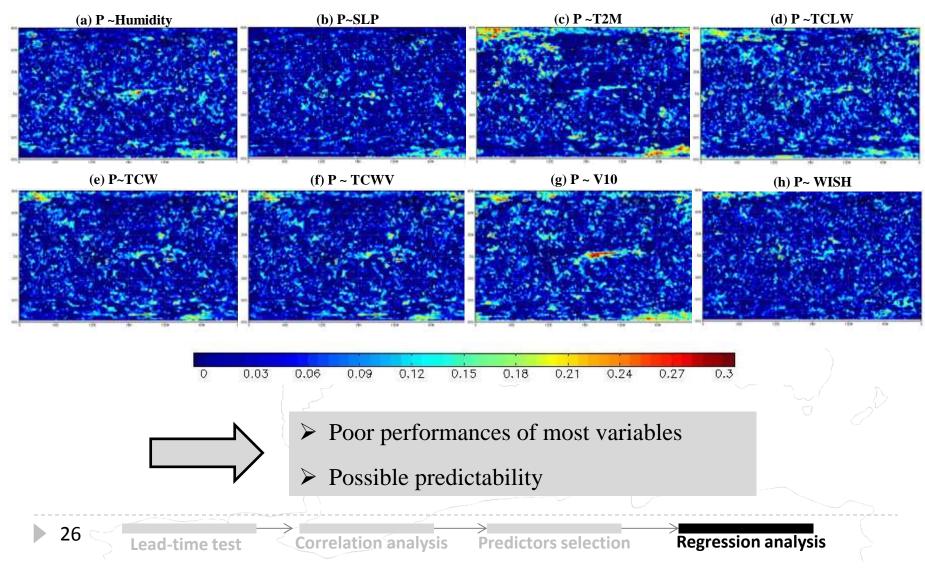
□ Forecast skill of monthly P by regression of SST predictors



Forecast skills of monthly P by regression of single-variable predictors



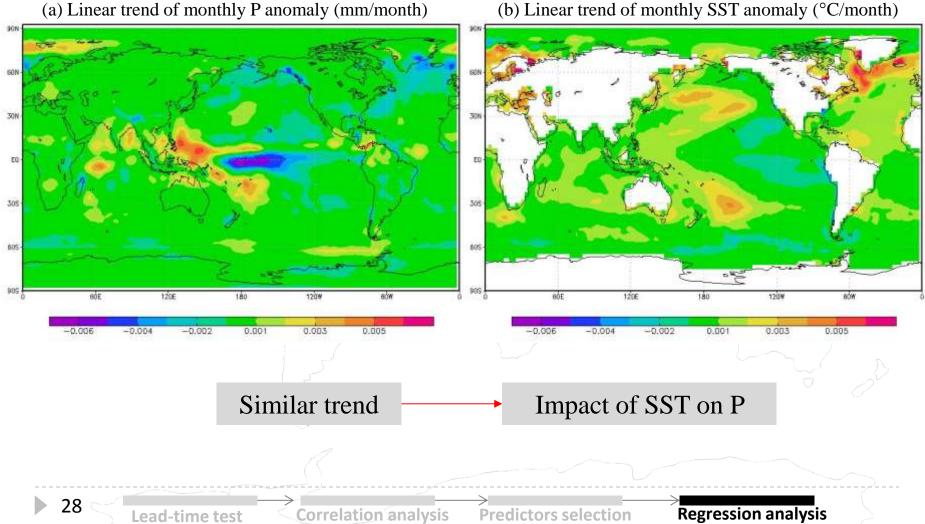
□ Forecast skills of **seasonal P** by regression of single-variable predictors



Forecast skill of P by regression of multiple-variable predictors

(b)Forecast skills of seasonal P by multiple-variable predictors (a)Forecast skills of monthly P by multiple-variable predictors 618 305 BOE 170F 120E 0.27 > Performances worse than by SST, better than by other 8 single variables 27 **Regression analysis Correlation analysis Predictors selection** ead-time test

Possible mechanism of predictability of P by SST

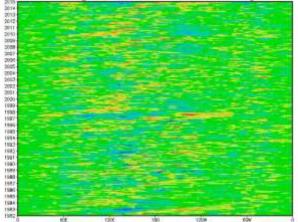


(b) Linear trend of monthly SST anomaly (°C/month)

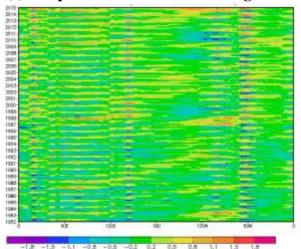
Possible mechanism of predictability of P by SST

Correlation analysis

(a) Temporal variation of P along LON



(c) Temporal variation of SST along LON

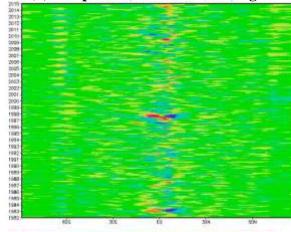


-1.8 -1.5 -1.1 -0.8 -0.9 -0.2 0.2 0.5 0.8 1.1 1.5 1.8

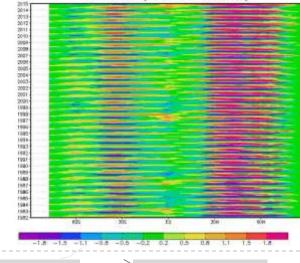
Lead-time test

29

(b) Temporal variation of P along LAT



(d) Temporal variation of SST along LAT

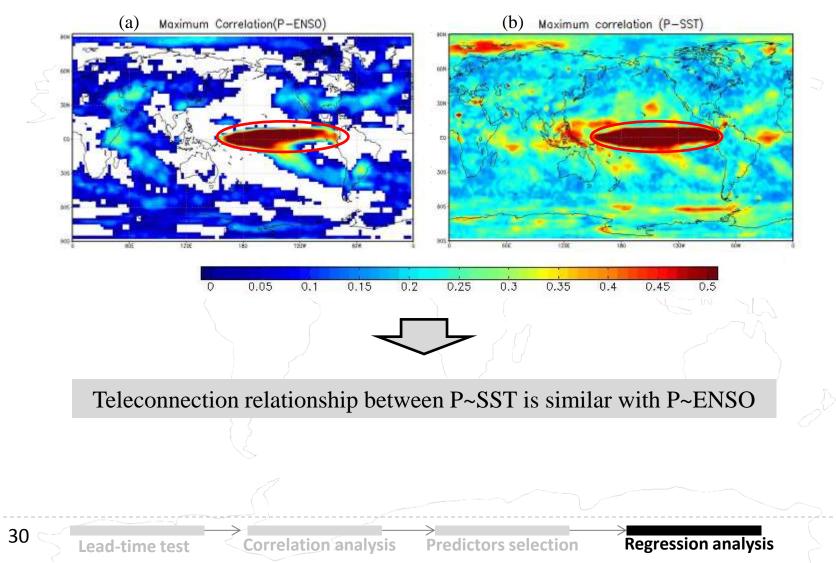


Predictors selection

Regression analysis

D

□ Possible mechanism of predictability of P by SST



- Introduction
 Literature Review
- Methodology and Data
- Preliminary Results

Conclusions

Future Work

A maximum Lead-time of 6 month

 Correlation relationship between P and SST is better than other variables, and most relationships show
 ENSO-related features.

Seasonal Forecast by single-variable SST is better than by other 8 single variables and the multiplevariable forecast.

Predictability of precipitation in some regions is possible.

Thank you for your attention!

Q&A SESSION