

Unsupervised Domain Adaptive Model for 3D Prostate Zonal Segmentation

Communications & Information

Health & Wellness

Biomedical and Genetic Engineering Computer/Al/Data Processing and Information Technology Testing Instruments

Figure 1: The pipeline of invention.

Opportunity

Prostate zonal segmentation is an important component of prostate cancer diagnosis, treatment planning, and disease prognosis. This assessment is often manually performed by clinicians, resulting in a drain on clinicians' time and causing human factors to influence the accuracy of the assessment. Cutting-edge approaches to prostate zonal segmentation employ deep learning based on 3D convolutional neural networks (CNN). These 3D CNNs exhibit strong performance when massive levels of training data are available – and when the training data share the same distribution with test data. However, these conditions may not necessarily apply to real-world scenarios, since it is not feasible to collect this level of data for each medical center and imaging device.

This invention employs labeled open-source prostate zonal segmentation data to augment a 3D CNN's knowledge of target data. To reduce the domain gap between the different data sets, this invention also dynamically translates labeled source data to target data using a domain-specific feature need translation method. This helps prevent performance degradation.

Technology

Source domain data for the 3D CNN is provided from three annotated opensource datasets. It is then randomly divided into three subsets: a training set, a validation set, and a test set. For this invention, the validation and test sets were labelled by two experienced radiologists. The 3D CNN is pre-trained with the labelled source data. Then this labelled source domain data, along with the unlabelled target domain data, are simultaneously fed into a model

Inventor(s) Dr. YUAN Yixuan Dr. GUO Xiaoqing Enquiry: kto@cityu.edu.hk

Technology Readiness

Level (TRL) ?

Proof

Build Value

that adapts the data to the target domain. Since there will be a gap between the source data and the target domain, this invention uses domain-specific feature translation to dynamically and gradually translate the labelled source data. The model's performance in prostate zonal segmentation is then evaluated in accordance with standard validation metrics.

Advantages

- This invention can reduce the time and costs required for prostate cancer diagnosis, treatment planning and disease prognosis.
- This invention can liberate clinicians from the tedious work of annotating prostate zonal segmentation using current methods.
- Unlike current state-of-the-art 3D models for prostate zonal segmentation, this invention does not require massive levels of annotated training data for each medical center or imaging device.
- This invention can reduce the domain gap and facilitate the adaptation of the model on target data, thereby improving performance.

Applications

- Cancer hospitals and centers
- Diagnostic laboratories

