

HONG KONG INSTITUTE FOR DATA SCIENCE POSTDOC ASSOCIATES AND STUDENTS SEMINAR

Deep learning models in diagnosing the lung adenocarcinoma histopathologically based on CT images

Dr Liuyin CHEN

Postdoc at Hong Kong Institute for Data Science City University of Hong Kong

Date: 11 March 2024 (Monday)

Time: 3:00pm - 4:00pm

Zoom meeting ID: 985 7555 6083

Seminar link: https://cityu.zoom.us/j/98575556083

Abstract

The latest international multidisciplinary histopathological classification of lung cancer indicates a deeper study of the lung adenocarcinoma requires a comprehensive multidisciplinary platform. However, in the traditional pathology examination or previous computer-vision-based research, the entire lung is not considered in a comprehensive manner. In this study, inferring the pathological report is divided into two tasks, predicting the invasiveness of the lung tumor and inferring growth patterns of tumor cells in a comprehensive histopathological subtyping manner with excellent accuracy. A self-distillation trained multi-task dense-attention network (SD-MdaNet) is proposed and validated. In the proposed method, the dense-attention module is introduced to better extract features from a small dataset in the main branch of the MdaNet. Next, task-specific attention modules are utilized in different branches and finally integrated as a multi-task model. Moreover, a specialized loss function is developed for the second task, a blend of classification and regression tasks. Finally, a knowledge distillation process is developed to take the advantage of all the models as well as data with labels and without labels. Experimental results demonstrate that the proposed SD-MdaNet can significantly improve the performance of the lung adenocarcinoma pathological diagnosis using only CT scans. Analyses and discussions are conducted to interpret the advantages of the SD-MdaNet.

Biography

Liuyin Chen received a B.S. degree in automation from University of Science and Technology of China, Hefei, China, in 2019, and a Ph.D. degree in data science from City University of Hong Kong, China, in 2023. She is currently with the Hong Kong Institute for Data Science, City University of Hong Kong, as a Postdoc. Her research interests include medical image analysis, computer-aided diagnosis, and image processing technologies.