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The Era of Big Data
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Real Examples of Big Data Applications

OAmazon Book Recommendation
» Replaced professional book reviewers

ONetflix: 98% data are missing
= 100,480,507 ratings: 480,189 users x 17,770 movies

OGoogle Translator (2006)
OGoogle’s Flu Prediction (2009)

= 45 features out of 150 millions ‘models’
» >90% accuracy predicting CDC data
= Later improved by time series models (AR)
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Data Analytics for Smart Manufacturing
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Smart Manufacturing — Extracting Actionable
Knowledge from Real-time Data
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Data Science Sees the Dark Side - Uncertainty

OEngineering principles understand the white side
Olndustrial loT’s provide more data on both sides

OThe challenge is to learn the dark side from data
* The right machine learning leads to intelligence

Operator/ Ambience/
Controller Disturbance

https://www.scmp.com |
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Data Analytics vs. System ldentificatio

System Data Analytics System Ildentification
0O Operation, multisource data 0O Designed experimental data
O Highly collinear data O Full excited data
O Partial dynamic data Q Fully dynamic data
0O Aiming to extract features in 0O Aiming to identify the ‘true’
the data, to be used for system model as accurately
= Monitoring, inference as possible; its use for
= Fault diagnosis control is implied

» Interpretation
* Prediction

System theory and data analytics should be integrated
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TIME-DEPENDENT DATA SERIES EXTRACTION

OApplication: Economic time series (Tsay, 2015)

State UNRATE: 1976.1 to 2016.9

year

Figure: Time plots of monthly unemployment rates of the 50 States in
the U.S. from January 1976 to September 2015. The data are seasonally
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Applic
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PMU and Syncrophasor at UT Austin (Allen et al., 2013, NREL)
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Chemical Processing: improving throughput

Recycle loops make ‘snowballing’

Slide - 11 © 8. Joe Qin

11

normalised pv

Chemical Processing Data (Thornhill et al., 2003)

normalised pv
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Industrial IoT Sensors vs. Dynamic Dimension

More sensors are installed, but the dimension of the dynamics does
not increase!
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https://www.sparklinglogic.com/prescriptive-analytics-industrial-iaté.
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Example: three latent variables, but only one is time dependent.
Question: how to extract the time-dependent feature?

Latent variables | Measured data
AAANANAAANAAAN R ANAAAA |
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Unknown latent sources B
to be extracted: ! Known data
the dark side
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Dynamic Latent Variable Models vs. PCA
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and HMM Models
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tk—l tk tk+1 tk—l tk tk+l tk—p tk—l tk tk+1
PCA model Hidden Markov Dynamic latent
-Dim reduction model (HMM) variable (DLV) model

*Time-dependent
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*Dim reduction
*Time-dependent
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Measured data

Ad hoc Method:

Use the most predictable
series as the ‘feature’.
Drawback: four other
series are thrown away

Dynamic Latent Variable Extraction (Dong and Qin, 2018)

Measured data

o —~u o on
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Dynamic Latent Variables (DiPCA, DiCCA)

APrincipal Component Analysis
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DiPCA, DiCCA references
DiPCA

Dong, Yining, and S. Joe Qin (2018). A Novel Dynamic PCA Algorithm
for Dynamic Data Modeling and Process Monitoring. Journal of Process
Control, 67, Pages 1-11.

DiCCA

Dong, Yining, and S. Joe Qin (2018). Dynamic Latent Variable Analytics
for Process Operations and Control. Computers and Chemical
Engineering, 114, Pages 69-80.

DiCCA SVD implementation

Dong, Yining, Y. Liu, and Qin, S. Joe (2020). Efficient Dynamic Latent
Variable Analysis for High Dimensional Time Series Data, /EEE
Transactions on Industrial Informatics. 16(6), 4068-4076.
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= What is the best 2D view of the
most dynamic features?

O Project to 2D and make them
most predictive

Example: Lorenz Attractor E o oty

t
Q Emulate the earth's atmosphere L —aztrr—y
= Explain the 'butterfly effect’ Z—: = zy — bz

https://commons.wikimedia.org/wiki/File:Lorenz_apparition small.gif
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Time-dependent Data
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[ DiCCA Dynamic Feature Analysis }

Chemical Plant Dynamic Feature Extraction
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Related Latent Dynamic Modeling Methods

AQin et al. 2020 provides a unified review
= S. Joe Qin, Yining Dong, Qinqin Zhu, Jin Wang, Qiang Liu (2020),
Bridging systems theory and data science: A unifying review of
dynamic latent variable analytics and process monitoring, Annual
Reviews in Control, 50, 29-48.

Contents lists available at ScienceDirect

Annual Reviews in Control

E l \i ,\ | ‘ |( iournal homepage: www.elsevier.com/locate/arcontrol

Review article

Bridging systems theory and data science: A unifying review of dynamic
latent variable analytics and process monitoring

S. Joe Qin™ , Yining Dong B Qingin Zhu*, Jin Wang“, Qiang Liu°
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Related Latent Dynamic Methods: Statistics

OBox, G. E. P, & Tiao, G. C. (1977). A canonical analysis of
multiple time series. Biometrika, 64, 355-365.
* Frist to realize dynamics in reduced dimensions

Q Brillinger, D. R. (1981). 7ime series: Data analysis and
theory. Expanded Edition. Holden- Day, Inc., San Francisco.

» Elegant frequency domain formulation, but the corresponding time
domain models are non-causal

0 Pena, D., Smucler, E., & Yohai, V. J. (2019). Forecasting
multiple time series with one-sided dynamic principal
components. JASA, 114, 1683-1694.

= Enforced causal models, but no explicit latent dynamic models
= The latent prediction is based on past data, not past latent variables
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Related Methods: Dynamic Factors in Econometrics

aPan, J., & Yao, Q. (2008). Modelling multiple time series via
common factors. Biometrika, 95, 365-379.

= Extracts the white noise latent variables, then builds VARMA models
in the reduced dimensions.

= Enforces latent dynamic models

OLam, C., Yao, Q., & Bathia, N. (2011). Estimation of latent
factors for high-dimensional time series. Biometrika, 98,
901-918.

= Extracts all DLVs with one eigen-decomposition or an equivalent
SVD.
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Related Methods: Subspace Identification

O Akaike, H. (1975). Markovian representation of stochastic
processes by canonical variables. SIAM Journal on Control,
13, 162-173.

» First to represent time series in state space
= No modeling of reduced dimensional latent variables

O Later work extends it to include exogenous variables for
system identification (Akaike (1976); Larimore (1990, 1996);
Van Overschee and De Moor (1994); Verhaegen (1994)).

= |f reduced dimensional latent variables are modeled as state
variables, first-order dynamics is resulted
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Related Methods: Linear Gaussian State Space

OQ. Wen, Z. Ge, and Z. Song, “Data-based linear Gaussian
state-space model for dynamic process monitoring,” AIChE
J., vol. 568, no. 12, pp. 3763-3776, 2012

» represents a reduced dimensional, first-order latent variable model

= Expectation-maximization (EM) is applied to estimate the latent
variables and model parameters
* The latent variables do not have rank-ordered predictability

a Zhou, L., Li, G., Song, Z., & Qin, S. J. (2017). Autoregressive
dynamic latent variable models for process monitoring. |IEEE
Transactions on Control Systems Technology, 25, 366-373.

» represents a reduced dimensional, multiple-order latent variable
model
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Related Methods: Machine Learning

O Wiskott, L., & Sejnowski, T. (2002). Slow feature analysis:
Unsupervised learning of invariances. Neural Computation,
14, 715-770.

= A special case of DiCCA with first-order integrating dynamics

O Richthofer, S., & Wiskott, L. (2015). Predictable feature
analysis. 2015 IEEE 14t international conference on machine
learning and applications (ICMLA) (pp. 190-196).

* Predictable feature analysis with multiple-order dynamics

0 Goerg, G. (2012). Forecastable component analysis
(ForeCA). 30th International Conference on Machine
Learning, ICML 2013.

* Forecastable component analysis
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Conclusions
OData analytics bring knowledge of the dark side -
learning the uncertainty
= Complement the ‘white side’ — known models @
OAnalyzing data from dynamic systems
requires new methods

» Data and/or noise are usually time dependent
» Operation data are often partially excited in dynamics,
requiring latent dynamic models
OLatent dynamic models define reduced dynamic
dimension, and are statistically parsimonious
= can be most predictive and infer causality
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