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Demo Code
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• QR code:
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Transformation of speech sound into phonetic units
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Natural speech is highly dynamic: 
~150 words per minute, 
~15-20 phonemes per second



Spatiotemporal resolution of imaging modalities

EEG fNIRS

fMRI MEG

Ø Cannot achieve high spatiotemporal resolution

Ø Noninvasive methods have low SNR
空
间
分
辨
率
/m

m

时间分辨率/ms

0.1

1

10

20

1 10 100 1000

5

EEG

MEG

fNIRS

fMRI

10000

5

Sp
at

ia
lr

es
ol

ut
io

n/
m

m

Temporal resolution/ms



Spatiotemporal resolution of Electrocorticography (ECoG)
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Intracranial EEG（ECoG）

Awake surgery

High density ECoG

ECoG

High density ECoG

• High spatial（~1mm， 256 channels in 5.5*5.5cm2）and temporal (ms) resolution

• One of the highest SNR methods for human in vivo neural recording



Neural electrophysiology signals recorded by ECoG

• Broadband high-gamma response in sensory and motor cortex
• ~70-150Hz broadband signal
• Reflecting local neuronal activity 

7

Hermes et al. Cereb. Cortex 2015Miller et al. J. Neurosci. 2007



Superior temporal gyrus (STG) codes for phonetic features.

• Different electrodes tune to different phonetic features --- A spatial code for acoustic-phonetic features

Mesgarani et al., Science, 2014 8



A neural encoding problem

• What are the features in speech that drive neural activity in cortex?

STG

HG
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n Computational level
Ø cognitive task and problem

n Algorithm level
Ø information representation and 

transformation

n Implementation level
Ø implementation through interactions 

between basic elements

Neural coding

Computational 
model

Marr 1982
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Verify theoretical 
hypotheses
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Marr’s three levels of analysis



Hypothesis-driven linear encoding models

• Linear temporal receptive field model reveals neural coding for distinct speech features in the human 
auditory cortex

STG

HG
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STG

“It is well liked by the children and faculty.”

“刘⼩ 光 显得较为 兴奋.”
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Tonal languages use pitch to distinguish word meanings

Tone 1

Tone 2

Tone 3

Tone 4



Research questions

• What features are encoded in STG in service of lexical tone representation?
• Lower-level acoustic cues?
• Complex intermediate features?
• Abstract tone category?

• Is the neural computation underlying lexical tone perception language-specific?
• Are the encoding properties shared across languages and across listeners with different language experiences?
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Lexical tones in continuous Mandarin speech evoke differential neural 
responses in discrete populations in STG

Li et al., Nat. Commun, 2021 14



Lower-level 
acoustic

High-level 
lexical

Intermediate
Context dependent

The differential neural responses are mainly driven by speaker-
normalized pitch features, rather than discrete tone category

15Li et al., Nat. Commun., 2021



The differential neural responses are mainly driven by speaker-
normalized pitch features, rather than discrete tone category

Li et al., Nat. Commun., 2021



Research questions

• What features are encoded in service of lexical tone representation?
• Lower-level acoustic cues?
• Complex intermediate features?
• Abstract tone category?
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Research questions

• What features are encoded in service of lexical tone representation?
• Lower-level acoustic cues?
• Complex intermediate features: speaker-normalized pitch (height and change)
• Abstract tone category?

• Is the neural computation underlying lexical tone perception language-specific?
• Is the encoding properties shared across languages and across listeners with different language experiences?
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Same listener listen to speech in different languages

“It is well liked by the children and faculty.”

English
speech

!" # $ %& '( ) *+,

Mandarin
speech

Encoding model 1

Encoding model 2

?



Single electrode encoding of speaker-normalized pitch is language-
independent

• Encoding model trained using English speech predicted neural response to lexical tones in Mandarin as 
good as Mandarin model.



Research questions

• What features are encoded in service of lexical tone representation?
• Lower-level acoustic cues?
• Complex intermediate features: speaker-normalized pitch (height and change)
• Abstract tone category?

• Is the neural computation underlying lexical tone perception language-specific?
• Single electrode encoding of speaker-normalized pitch is largely language-independent.
• What about the STG population response?
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Different listeners listen to the same speech

Native 
Mandarin 
speaker

Native 
English 
speaker

?
Mandarin 
speech
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Li et al., Nat. Commun, 2021 22



Mandarin speakers showed broader dynamic range and longer temporal 
integration window for pitch encoding in STG

Li et al., Nat. Commun, 2021 23



Compare STG state space to acoustic space
• Tone decoding accuracy in STG population and acoustic space:

• Mandarin speakers > Acoustic space = English speakers 
= Mandarin subset (take out negative 

coding electrodes)

Acoustic 
space

Li et al., Nat. Commun, 2021 24



Research questions

• What features are encoded in service of lexical tone representation?
• Lower-level acoustic cues?
• Complex intermediate features: speaker-normalized pitch (height and change)
• Abstract tone category?

• Is the neural computation underlying lexical tone perception language-specific?
• Single electrode encoding of speaker-normalized pitch is largely language-independent.
• What about the STG population response?
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Research questions

• What features are encoded in service of lexical tone representation?
• Lower-level acoustic cues?
• Complex intermediate features: speaker-normalized pitch (height and change)
• Abstract tone category?

• Is the neural computation underlying lexical tone perception language-specific?
• Single electrode encoding of speaker-normalized pitch is largely language-independent.
• Population representation are influenced by language experience. 
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Marr’s three levels of analysis

n Computational level
Ø cognitive task and problem

n Algorithm level
Ø information representation and 

transformation

n Implementation level
Ø implementation through interactions 

between basic elements

Neural coding
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Verify theoretical 
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e.g. relative pitch encoding, 
articulatory phonetic features,
etc. 



Marr’s three levels of analysis

n Computational level
Ø cognitive task and problem

n Algorithm level
Ø information representation and 

transformation

n Implementation level
Ø implementation through interactions 

between basic elements

Neural coding

Computational 
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State-of-the-art AI models for speech

29
Wav2Vec 2.0: Baevski et al. NeurIPS 2020;
HuBERT: Hsu et al. ICASSP 2021

internal representation sequences
Word error rate ~ 5% in 
speech recognition tasks 
(human ~4%)



Research questions

• What is a good deep neural network model for speech perception in auditory pathway?
• Architecture: CNN-based models have been dominating 
• Training objective: supervised models have been dominating

• What are the key factors that make the DNN model good at predicting speech response in the brain?
• Computations
• Representations



• Same architecture w/ different training objectives
• HuBERT (masked prediction)
• Wav2Vec 2 unsupervised (contrastive learning)
• Wav2Vec 2 supervised (ASR)
• HuBERT/Wav2Vec 2 pure supervised (ASR)

• Different architecture w/ same objectives
• HuBERT/Wav2Vec 2 pure supervised (ASR)
• DeepSpeech 2 (ASR): LSTM

Neural network models

C C C C C C C C

Contextualized representations
(Transformer encoders/LSTMs)

Unsupervised
objective

Supervised
objective

Contextual units

W2V unsup Contrastive learning N/A transformer

W2V sup Contrastive learning ASR transformer

HuBERT Masked prediction N/A transformer

HuBERT/W2V sup N/A ASR transformer

DS2 N/A ASR LSTM

global/
contextual

local



• Same architecture w/ different training objectives
• HuBERT (masked prediction)
• Wav2Vec 2 unsupervised (contrastive learning)
• Wav2Vec 2 supervised (ASR)
• HuBERT/Wav2Vec 2 pure supervised (ASR)

• Different architecture w/ same objectives
• HuBERT/Wav2Vec 2 pure supervised (ASR)
• DeepSpeech 2 (ASR): LSTM

Neural network models

C C C C C C C C

Contextualized representations
(Transformer encoders)

Acoustic Unit Discovery System
(e.g. k-means on MFCC)

HuBERT
Hsu et al. 2021
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• Same architecture w/ different training objectives
• HuBERT (masked prediction)
• Wav2Vec 2 unsupervised (contrastive learning)
• Wav2Vec 2 supervised (ASR)
• HuBERT/Wav2Vec 2 pure supervised (ASR)

• Different architecture w/ same objectives
• HuBERT/Wav2Vec 2 pure supervised (ASR)
• DeepSpeech 2 (ASR): LSTM

Neural network models

C C C C C C C C

Contextualized representations
(Transformer encoders)

Contrastive loss

Wav2Vec 2
unsupervised Baevski et al. 2020
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• Same architecture w/ different training objectives
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• Same architecture w/ different training objectives
• HuBERT (masked prediction)
• Wav2Vec 2 unsupervised (contrastive learning)
• Wav2Vec 2 supervised (ASR)
• HuBERT/Wav2Vec 2 pure supervised (ASR)

• Different architecture w/ same objectives
• HuBERT/Wav2Vec 2 pure supervised (ASR)
• DeepSpeech 2 (ASR): LSTM

Neural network models

C C C C C C C C

Contextualized representations
(Transformer encoders)

CTC loss

HuBERT/Wav2Vec 2
Pure supervised Baevski et al. 2020
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• Same architecture w/ different training objectives
• HuBERT (masked prediction)
• Wav2Vec 2 unsupervised (contrastive learning)
• Wav2Vec 2 supervised (ASR)
• HuBERT/Wav2Vec 2 pure supervised (ASR)

• Different architecture w/ same objectives
• HuBERT/Wav2Vec 2 pure supervised (ASR)
• DeepSpeech 2 (ASR): LSTM

Neural network models

C C C C C C C C

Contextualized representations
(LSTM)

CTC loss

DeepSpeech 2
Amodei et al. 2016
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W2V sup Contrastive learning ASR transformer

HuBERT Masked prediction N/A transformer

HuBERT/W2V sup N/A ASR transformer

DS2 N/A ASR LSTM
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Transformation of speech sound into phonetic units
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He moistened his lips uneasily.

Neural responses

Frequency 
selectivity

Band-pass and 
band-reject

Narrow band
frequency tuning

Complex time-
frequency patterns
& extended
dynamics
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Encoding models

• Metrics that quantify the performance of different encoding models
• Maximum prediction score: maximum over all time window lengths
• Saturation point: the minimum time window length such that maximum score is within mean + 1 s.e.m.

Maximum scoreSaturation point



Research questions

• What is a good deep neural network model for speech perception in auditory pathway?
• Architecture: CNN-based models have been dominating 
• Training objective: supervised models have been dominating

• What are the key factors that make the DNN model good at predicting speech response in the brain?
• Computations: 
• Representations



What’s the best model for each area?

• Different areas have drastically different temporal response profiles

Li et al. under review



What’s the best model for each area?

• Static nonlinear filters (CNN) is good for AN

Li et al. under review



What’s the best model for each area?

• Static nonlinear filters (CNN) is good for AN

Li et al. under review



What’s the best model for each area?

• Static nonlinear filters (CNN) is good for AN, IC

Li et al. under review



What’s the best model for each area?

• Static nonlinear filters (CNN) is good for AN, IC & HG

Li et al. under review



What’s the best model for each area?

• Static nonlinear filters (CNN) is good for AN, IC & HG

• Contextual models (LSTM & Transformer) outperforming CNN & feature models in STG

• Unsupervised models perform as good as supervised models, if not better

Li et al. under review



The early to later layers in the same deep neural networks trained to 
learn speech representations correlate to the AN-Midbrain-STG pathway
• Hierarchy within the same unsupervised model (HuBERT)

AN IC HG STG

Li et al. under review



Clustering STG electrodes according to response profiles

• NMF and clustering into onset and sustained populations

Li et al. under review



Functional subpopulations in STG correlate to different contextual 
representation layers in DNN
• DNN maintains the transient onset representation throughout the processing pipeline

• Later layers represent both transient and sustained representations in parallel

Li et al. under review



Research questions

• What is a good deep neural network model for speech perception in auditory pathway?

• What are the key factors that make the DNN model good at predicting speech response in the brain?



Research questions

• What is a good deep neural network model for speech perception in auditory pathway?
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• The early to later layers in the deep neural networks trained to learn speech representations 
correlate to the ascending AN-Midbrain-STG auditory pathway

• Functional subpopulations in STG correlate to different contextual representation layers in 
DNN

• The general results are consistent across network architecture and training objectives



Research questions

• What is a good deep neural network model for speech perception in auditory pathway?

• What are the key factors that make the DNN model good at predicting speech response in the brain?

• The early to later layers in the deep neural networks trained to learn speech representations 
correlate to the ascending AN-Midbrain-STG auditory pathway

• Functional subpopulations in STG correlate to different contextual representation layers in 
DNN

• The general results are consistent across network architecture and training objectives



Vaswani et al. NeurIPS 2017

Context dependent computations in Transformer encoders

• Transformer uses self-attention to extract context dependent information dynamically

55



Context dependent computations

• Attention example:   “A bullet, she answered. ”

A  buh lit      shee aen serd.   

Local attention

A  buh lit      shee aen serd.   A  buh lit      shee aen serd.   

Attention to one syllable ahead Attention to longer context



Context dependent computations

• Attention example:   “It sounded silly, why go on?”

It sawn did  si liy why go  on? It sawn did  si liy why go  on? It sawn did  si liy why go  on?

Local attention Attention to one syllable ahead Attention to longer context



• Attention example
• ‘“A bullet”, she answered.’
• HuBERT



Parsing attentions according to temporal structures in speech

59

• Attending to phonemic and syllabic context as stimulus-dependent computations



Increasing
contextual
dependency



Attention to phonemic and syllabic contexts

• Increased level of contextual phonemic and syllabic attentions along the hierarchy

local contextual
61Li et al. under review



• Primary auditory 
cortex and auditory 
peripheral correspond 
to local phonemic 
computation

• STG corresponds to 
cross-phonemic and 
cross-syllable 
contextual attention

Attention patterns explains brain correspondence

62
Li et al. under review



Language-specific representations & computations

• Cross-language comparisons in DNN and STG

63



Language-specific representations & computations

• STRF model is not sensitive to language-specific representations in STG of English speakers.

• English-pretrained model aligned to English speech better than Mandarin speech for native English 
speaker

64Li et al. under review



Language-specific representations & computations

• Mandarin-pretrained model aligned to Mandarin speech for native Mandarin speaker

65Li et al. under review



Feature representations

• Unique variance explained by each set of features in DNN
• Spectro-phonological hierarchy

Li et al. under review



Feature representations

• Unique variance explained by each set of features in DNN
• Spectro-phonological hierarchy

Li et al. under review



Research questions

• What is a good deep neural network model for speech perception in auditory pathway?

• What are the key factors that make the DNN model good at predicting speech response in the brain?

• Attention patterns explains brain correspondence: auditory pathway
• Language-specific representation and computations aligned between DNN and STG
• The representations in neural networks can be explained by an acoustic-phonological 

hierarchy

• The early to later layers in the deep neural networks trained to learn speech representations 
correlate to the ascending AN-Midbrain-STG auditory pathway

• Functional subpopulations in STG correlate to different contextual representation layers in 
DNN

• The general results are consistent across network architecture and training objectives



Open questions

• What is not captured by the DNN models and how to interpret it?

• How to incorporate top-down effects?

• Biological plausibility
• Higher-level information representation beyond phonetics



Marr’s three levels of analysis

n Computational level
Ø cognitive task and problem

n Algorithm level
Ø information representation and 

transformation

n Implementation level
Ø implementation through interactions 

between basic elements
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AI models can do both!
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Brain network

AI modelsBrain-inspired AI
model

Marr’s three levels of analysis



Thank you!
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Demo Code

• GitHub:  https://github.com/yuanningli/neural_encoding_demo
• QR code:
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