Time－frequency analyses and MCCA on Naturalistic Stimuli in EEG and MEG experiments

Xiangbin Teng 滕相斌

Assistant Professor
Department of Psychology
The Chinese University of Hong Kong
Shatin，N．T．
Hong Kong SAR

Learning Goal

Present stories, music, or movies to participants while recording their brain signals using EEG or MEG

Extract meaningful signals related to the stimuli
Conduct a time-frequency decomposition
Quickly clean signals and prepare for high-level analyses

Segmenting and Predicting Musical
Phrase Structure Exploits Neural
Gain Modulation and Phase
Precession
Contributors: Xiangbin Teng, Pauline Larrouy-Maestri
Date created: 2019-11-05 04:15 AM | Last Updated: 2022-04-27 04:22 AM
Identifier: DOI 10.17605/OSF.IO/VTGSE
Category: Project
Description: Add a brief description to your project
License: CC-By Attribution 4.0 International

Teng, X., Larrouy-Maestri, P., \& Poeppel, D. (2021).
Segmenting and Predicting Musical Phrase Structure Exploits Neural Gain Modulation and Phase Precession. bioRxiv.
https://www.dropbox.com/sh/rml9z6hkw5in5du/AAA R3Wcy_66fnQms24wfM9Ipa?dl=0

Sounds, speech, and music

Speech

Music

From sounds to meanings

Continuous and linear

Discrete and hierarchical

The train is arriving. Please let passengers exit first.

Multi-timescale information in linear sequences

The train is arriving. Please let passengers exit first.

The train is arriving.

Train, arrive, passengers, exit
ðِə trein IZ ə'raivin

Multi-timescale information in linear sequences

Timescale

The world is dynamic and hierarchical

Stephanie et al., 2019

Zacks et al., 2007
Baldassano et al., 2017

Naturalistic stimuli are continuous and are composed of discrete units across many timescales

How do you extract neural responses to units at each timescale?

MEG and EEG

- Measure the electric potential (EEG) magnetic field (MEG) generated by neural currents
- Reasonable spatial resolution
- Real-time measures of brain activity
- Frequency-specific measures of association (connectivity)

Event-related paradigm

Event-related paradigm

Evoked/Induced Power Inter-trial phase coherence

We don't hear a sentence many times.
We don't watch a video many times.
We don't listen to music many times.

In MEG/EEG experiments with naturalistic stimuli

1. Present a natural stimulus once
2. Record MEG/EEG signals
3. Derive meaningful neural signatures
4. Answer our scientific questions

The world is dynamic and hierarchical

Stephanie et al., 2019

Zacks et al., 2007
Baldassano et al., 2017

Multi-timescale information in linear sequences

Timescale

Listen to naturalistic music

Knösche et al., 2005; Neuhaus et al., 2006; Koelsch et al., 2013;
Silva et al., 2014; Koelsch et al., 2019

Music material: Bach chorale

[^0]Timescale

Phase precession

Teng, Ma, et al., 2020, Current Biology

Teng et al., 2021a, bioRxiv

Each music piece is only presented once

EEG recording

EEG channels
Component 1

Spatial projection

Alain de Cheveigné et al., 2019.

The $1^{\text {st }}$ PCA extracts shared components across EEG channels

The $2^{\text {nd }}$ PCA is applied on the PCA components from all the participants.

The $2^{\text {nd }}$ PCA should extracts shared components across all the participants.

What is shared among all the participants?

Each music piece is only presented once

EEG recording

Every participant is listening to the same stimulus.

The 2nd PCA extracts the neural responses shared among participants - music-related components.

Multiway canonical correlation analysis of brain data

```
Alain de Cheveignéa,b,c ᄋ 『, Giovanni M. Di Liberto a, b, Dorothée Arzounian a,b, Daniel D.E. Wong a,b
, Jens Hjortkjær d, e, Søren Fuglsang ', Lucas C. Parra }\mp@subsup{}{}{\mathrm{ f}
```


Teng et al., 2020b

- 1)

Replication: neural tracking of note and beat

 Frequency (Hz)

Replication: neural tracking of note and beat

Music training v.s. Neural tracking

Where is the musical phrase?

EEG power (Original: An wasserfluessen Babylon)
66 bpm , beat rate: 1.1001 Hz

Musical phrasal segmentation below 0.2 Hz

A 'double FFT' (Modulation Spectrum)
Teng et al., 2019

Timescale

Music

EEG pipeline for naturalistic stimuli

Thank you

[^0]: 1 Ach Gott vom Himmel, sieh' da rein 2 Ach Gott wie manches Herzeleid 3 An wasserfluessen Babylon 4 Erhalt uns, Herr, bei deinem Wort 5 Ermuntre dich, mein schwacher Geist 6 Es ist das Heil uns kommen her 7 Es spricht der Unweisen Mund wohl 8 Ich danke dir, o Gott, in deinem Throne 9 O Ewigkeit, du Donnerwort

