Computational Modeling of Human Perceptual Decision-Making

Ru-Yuan Zhang(张洳源) Institute of Psychology and Behavioral Sciences Shanghai Mental Health Center 2022/12/10

Who am I?

• 2006–2010, B.S., Psychology and Computer Science, Peking University.

- 2010–2016, Ph.D., Brain&Cognitive Sciences, University of Rochester.
- 2016–2020, Postdoc, Center for Magnetic Resonance Research, University of Minnesota at Twin Cities.
- 2020.01-09, Postdoc, Section on Functional Imaging Methods, NIMH, NIH.

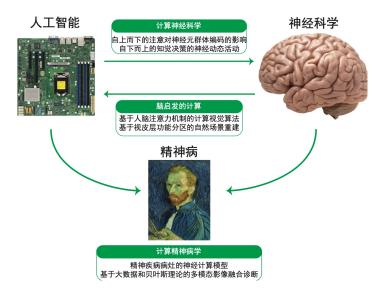
2020.09-present, Associate Professor, Shanghai Jiao Tong University
 2022/12/10

ROCHESTER

Who am I?

Associate Professor, Principal Investigator

Laboratory of Cognitive Computational Neuroscience and Neuroimaging https://ruyuanzhang.github.io

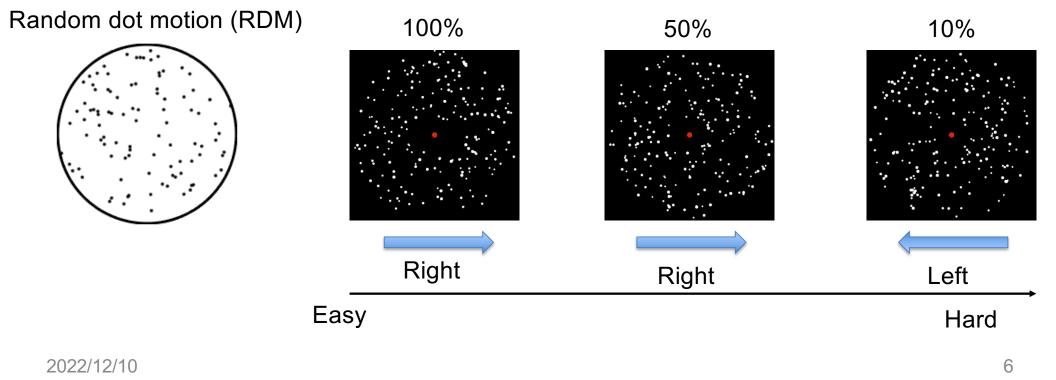


Laboratory of Cognitive Computational Neuroscience and Neuroimaging News!

Research directions

- Cognitive Computational Neuroscience
- Deep Learning and Human Vision
- Computational Psychiatry

- Goal: hands-on model fitting practice on perceptual decision-making
- Content:
 - Section 1: modeling a simple perceptual choice
 - Section 2: modeling perceptual choice and reaction time


Section 1

Modeling a simple perceptual choice

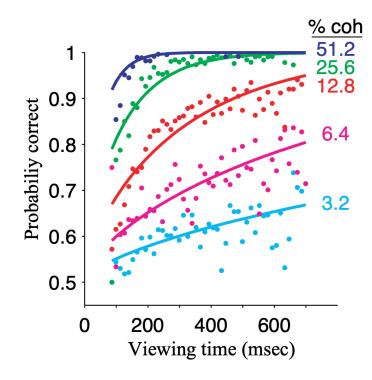
Section 1

• Simple perceptual decision making

Coherence Level: fraction of dots coherently moving to one direction

Michael Shadlen

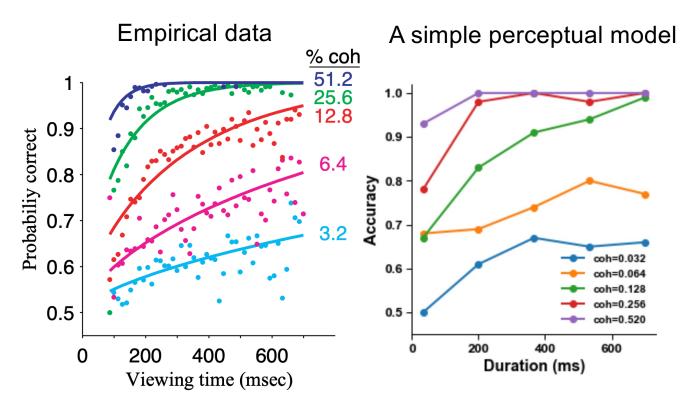
https://zuckermaninstitute.columbia.edu/michael-n-shadlen-md-phd/



A computational analysis of the relationship between neuronal and behavioral responses to visual motion

MN Shadlen, KH Britten, WT Newsome... - Journal of ..., 1996 - Soc Neuroscience

We have documented previously a close relationship between neuronal activity in the middle temporal visual area (MT or V5) and behavioral judgments of motion (Newsome et al., 1989; Salzman et al., 1990; Britten et al., 1992; Britten et al., 1996). We have now used numerical simulations to try to understand how neural signals in area MT support psychophysical decisions. We developed a model that pools neuronal responses drawn from our physiological data set and compares average responses in different pools to ... \sum Save \overline{SS} Cite Cited by 997 Related articles All 18 versions

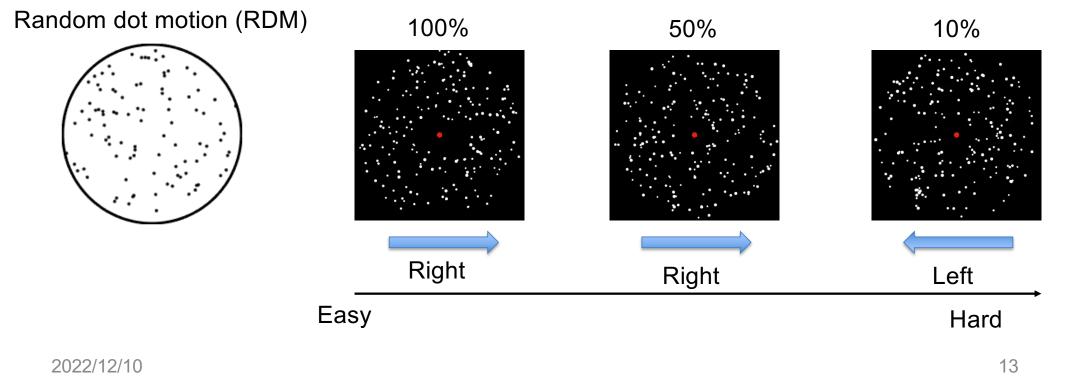

Showing the best result for this search. See all results

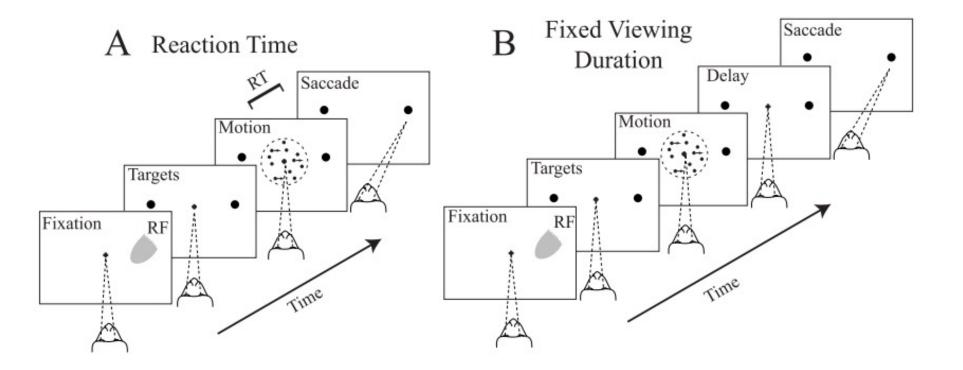
- Higher coherence, higher accuracy
- Longer duration, higher accuracy

How can we model such a simple perceptual effect??

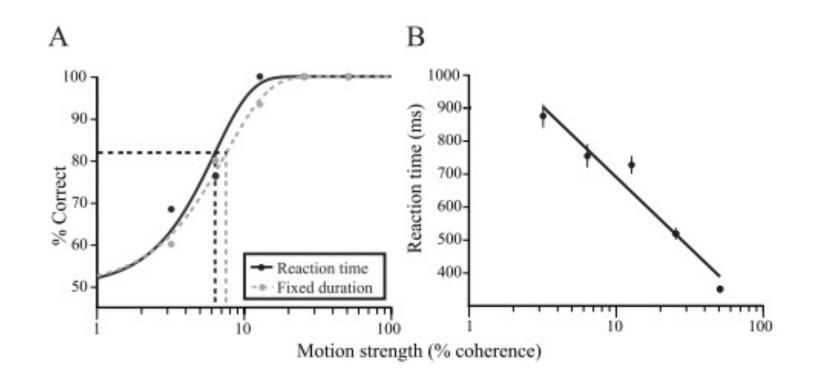
A simple model of perceptual decision-making (pdm1.ipynb)

- Higher coherence, higher accuracy
- Longer duration, higher accuracy
- The subject makes a decision by counting dots moving to left/right
- In real experiments, we test many coherence levels and many stimulus durations in many trials


Section 2


Modeling perceptual choice and reaction time

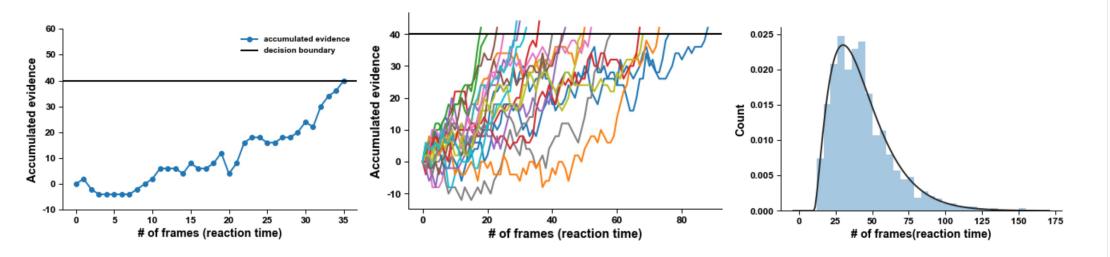
Section 2


• Simple perceptual decision making

Coherence Level: fraction of dots coherently moving to one direction

Roitman&Shadlen, J. Neurosci. 2002

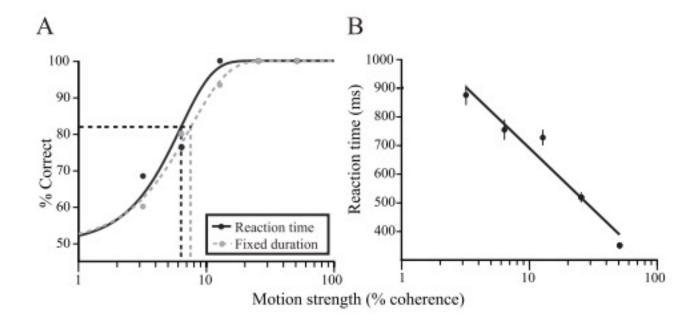
Roitman&Shadlen, J. Neurosci. 2002


- Drift diffusion model (DDM)
- DDM is one of the most frequently used models in perceptual decision-making

What is drift-diffusion?

- Evidence accumulation
- Drift-diffusion
- Decision boundary

A simple illustration of the drift-diffusion process (pdm2.ipynb)


drift-diffusion models

Summary

- We calculate sensory evidence in each frame
- The over sensory evidence accumulates as a drift-diffusion process
- A choice is triggered when accumulated evidence reaches a fixed decision boundary
- The reaction time distribution bears strong resemblance to the empirical reaction time data

Speed-accuracy trade-off

Higher coherence, Higher accuracy, shorter reaction time

Accuracy and reaction time are negatively correlated

Speed-accuracy trade-off

- Conservative decision-maker
 - High accuracy but long reaction time
- Impulsive decision-maker:
 - Short reaction time but low accuracy

Speed-accuracy trade-off !!!

Can drift-diffusion model account for speed-accuracy trade-off?

(pdm3.ipynb)

Speed-accuracy trade-off

Empirical data Our drift-diffusion model В А 1.0 \square 11 100 -1000 6 0.9 900-Reaction time Reaction time (ms) 90-Accuracy 800-5 0.8 80 % Correct 700-4 600-0.7 500-3 0.6 - Reaction time 400 50 · Fixed duration 0.5 2 111 100 10 10 100 10⁻¹ 10⁻¹ Motion strength (% coherence) Coherence Coherence

2022/12/10

Section 2-Summary

- We calculate sensory evidence in each frame
- The overall sensory evidence accumulates as a drift-diffusion process
- A choice is triggered when accumulated evidence reaches a fixed decision boundary
- The reaction time distribution bears strong resemblance to empirical reaction time data
- Drift-diffusion models can well account for the speed-accuracy tradeoff in perceptual decision making
- Decision impulsivity is associated with decision bounds
 - impulsive = low decision bound
 - conservative = high decision bound

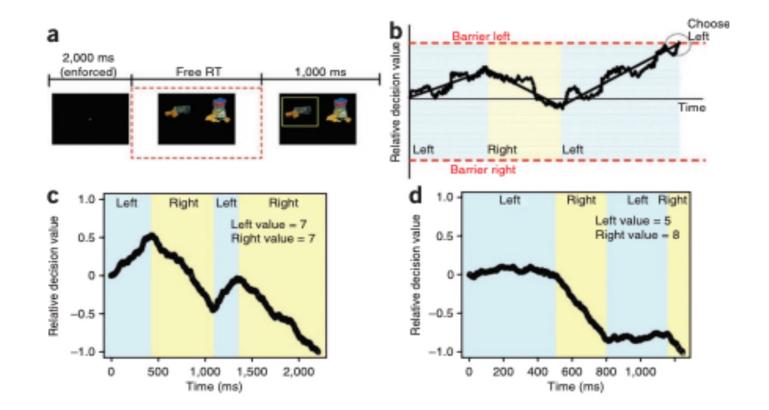
Section 2-real data

• How can we perform drift-diffusion modeling on real data?

(PDM4.ipynb)

Applications-consumer decisions

Consumer decisions


ARTICLES

nature

Visual fixations and the computation and comparison of value in simple choice

Ian Krajbich¹, Carrie Armel² & Antonio Rangel^{1,3}

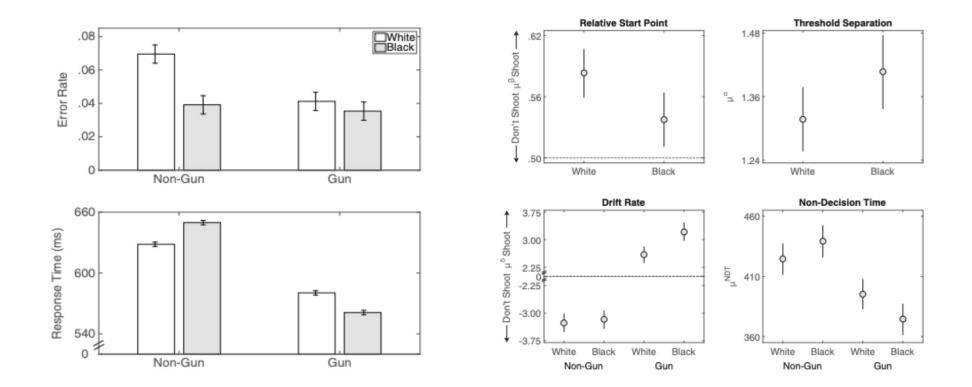
Applications-consumer decisoins

2022/12/10

25

Applications-social decisions

Psychon Bull Rev (2018) 25:1301–1330 https://doi.org/10.3758/s13423-017-1369-6



THEORETICAL REVIEW

How race affects evidence accumulation during the decision to shoot

Timothy J. Pleskac¹ · Joseph Cesario² · David J. Johnson²

Applications-social decisions

2022/12/10

27

- Section 1: modeling perceptual choice
 - The subject makes a decision by counting dots moving to left/right
 - In real experiments, we test many coherence levels and many stimulus durations in many trials

• Section 2: modeling perceptual choice and reaction time

- We calculate sensory evidence in each frame
- The overall sensory evidence accumulates as a drift-diffusion process
- A choice is triggered when accumulated evidence reaches a fixed decision boundary
- Drift-diffusion model can well account for the speed-accuracy tradeoff in perceptual decision making
- Decision impulsivity is associated with decision bounds
 - impulsive = low decision bound
 - conservative = high decision bound

Advanced materials

- Multi-subjects hierarchical drift-diffusion modeling
- A easy-to-use docker image

Running title: Bayesian HDDM with docker 1 2 A Hitchhiker's Guide to Bayesian Hierarchical Drift-3 **Diffusion Modeling with dockerHDDM** 4 5 Hu Chuan-Peng¹, Haiyang Geng², Lei Zhang^{3, 4, 5}, Alexander Fengler⁶, Michael J. Frank⁶, Ru-6 Yuan Zhang^{7, 8} 7 8 9 ¹ School of Psychology, Nanjing Normal University, Nanjing 210024, China 10 ² Tiangiao and Chrissy Chen Institute for Translational Research, Shanghai, China ³ Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and 11 Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, 1010, Austria 12 ⁴ Centre for Human Brain Health, School of Psychology, University of Birmingham, 13 Birmingham B15 2TT, UK 14 ⁵ Institute for Mental Health, School of Psychology, University of Birmingham, Birmingham 15 16 B15 2TT, UK ⁶Department of Cognitive, Linguistic and Psychological Sciences, Brown University, 17 Providence, United States 18

- ⁷ Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai
 200030, China.
- 21 ⁸ Institute of Psychology and Behavioral Science, Antai College of Economics and Management,
- 22 Shanghai Jiao Tong University, Shanghai 200030, China.

Preprint: https://psyarxiv.com/6uzga

Github: https://github.com/hcp4715/dockerHDDM

dockerhub: https://hub.docker.com/r/hcp4715/hddm

Chuan-Peng Hu, Professor Nanjing Normal University

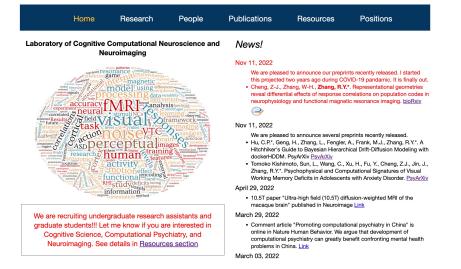
Acknowledgments

- Teaching Materials
 - Prof. Robert Wilson (U Arizona): <u>http://u.arizona.edu/~bob/web_NSCS344/</u>
 - Prof. Brenden Lake (NYU): <u>https://brendenlake.github.io/CCM-site/</u>
- Collaborators

Chuan-Peng Hu Nanjing Normal University 2022/12/10

Lei Zhang Univ. Birmingham

Haiyang Geng TCCI


Alexander Fengler Brown

Michael Frank Brown

Concluding remarks

- This tutorial: <u>https://github.com/ruyuanzhang/20221210_CITUWORKSHOP</u>
- Lab page: <u>https://ruyuanzhang.github.io/</u>
- We hire Postdoc!
 - · Cognitive neuroscience, computational neuroscience, neuroimaging

