

Structural connections constrain functional dynamics in the brain

Quanying Liu (刘泉影)

liuqy@sustech.edu.cn Department of Biomedical Engineering Southern University of Science and Technology

December 11, 2022 Neuroimaging Methods Workshop, City University of Hongkong 南方科技大学 Southern University of Science and Technology (SUSTech) is a young, public university in Shenzhen, China.

It was founded in 2010, and is working towards becoming a worldclass university, ranked 8th in China by Times Higher Education & QS World University Rankings in 2021.

Data preprocessing

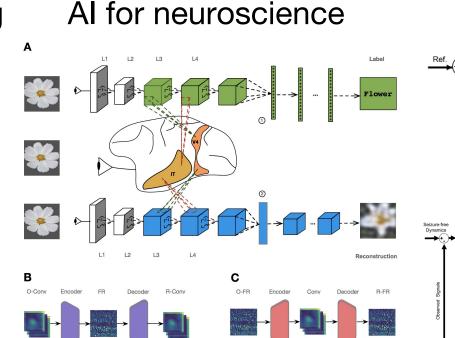
Inlume conduction model creation

co-registratio

hdEEG

Electrodes Incation

Quanying Liu (刘泉影)


Assistant Professor of BME, SUSTech

Bachelor/master at Lanzhou University, PhD at ETH Zurich, postdoc at Caltech

Research interests: Multi-modal neural data processing (EEG, iEEG, DTI, fMRI,...), Brain network modelling, AI for neuroscience, Control theory for neurostimulation

Multi-modal neural data processing

forward solution Head model

Neurostimulation

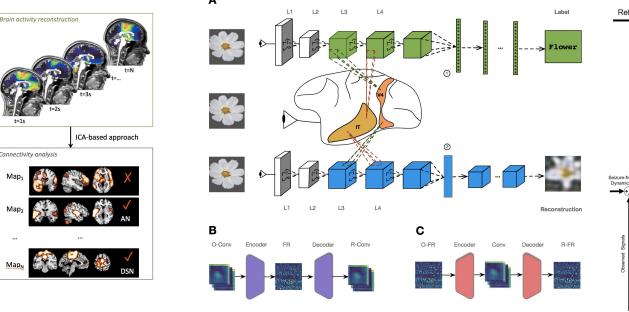
Control Plant Real Brain

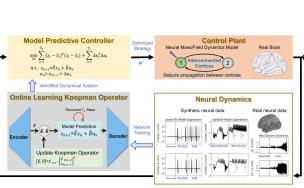
Brain Dynamics

JR or Epileptor mode

MPC control

Model Predictive


Controller


Deep Koopman

Model

Sensors

Observed Signals

Contents

Theory session (Brain network modeling)

- Basic concepts of neuroimages: T1/T2, DTI, fMRI, and their processing pipeline
- Brain network modelling: Structural/functional/effective network
- Structure-function modelling: bridging the brain structure and functional dynamics

Hands-on session (interlacing with theory session)

- 1. Data analysis pipeline: obtain structural connectome (DTI) and functional series (fMRI)
- 2. Brain network modelling:
 - Partial Least Square (PLS) Analysis to study Structure-Function relationship
 - Python Implemenation of Structural-Decoupling Index
- 3. Our fusion optimization method

Achknoledgements

Zhichao Liang (梁智超) All members in NCC lab

NCC lab的微信公众号

- Youtube课程推荐
- 科普文章
- 学术论文解读

0	ncclabsustech Update README.md		e1a652f 28 minutes ago 🕚	14 commits
	article	Add files via upload	44	minutes ago
	data	Add files via upload		1 hour ago
	script	Add files via upload	42	minutes ago
۵	1. Pipeline_Generating_Structural	Add files via upload		1 hour ago
D	2. Basic_Introduction_of_Nilearn1	Add files via upload		1 hour ago
D	3. Python_implementation_of PLS	Add files via upload		1 hour ago
۵	4. Python_implementation_of_stru	Add files via upload		1 hour ago
Ľ	5. Basic_Optimization_with_PyTorc	Add files via upload		1 hour ago
۵	README.md	Update README.md	28	minutes ago

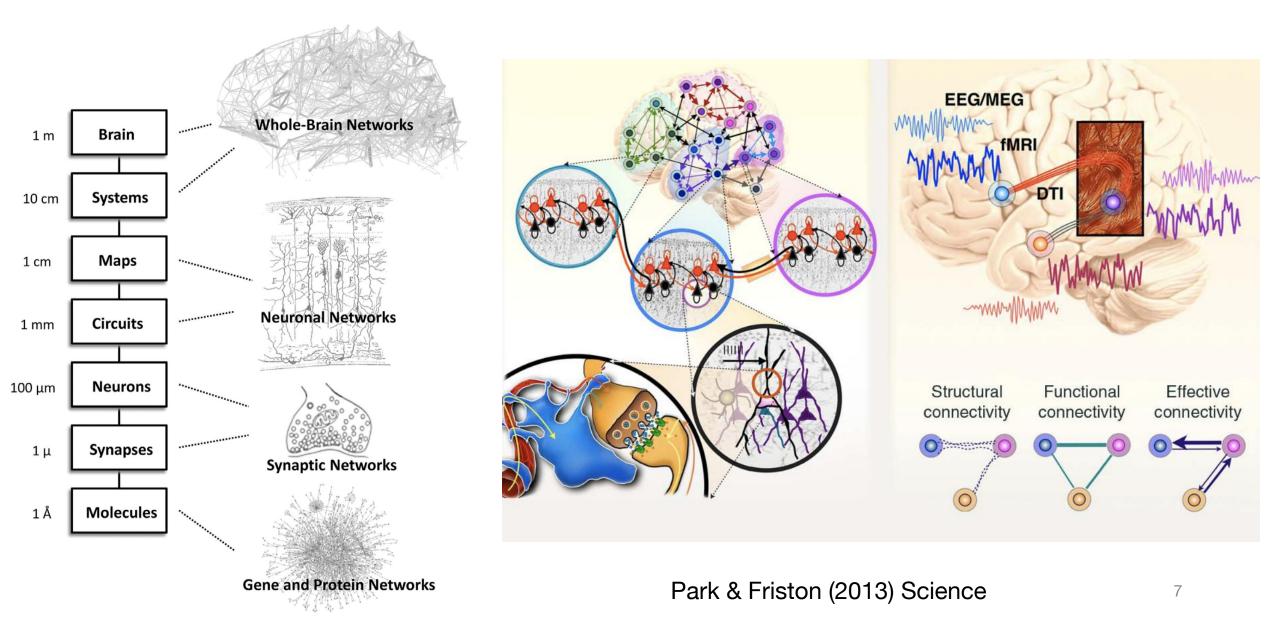
README.md

NM_workshop

Tutorial on Neuroimaging Methods Workshop

We will cover the following tutorials:

- 1. The steps to generate the structural connectome from mrtrix3. [The script of the whole process is uploaded.]
- 2. The steps to generate functional time series from nilearn.
- 3. The python implementation of the partial least square analysis of structural connectome and functional connectivity.

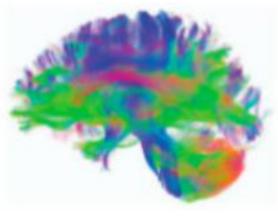

梁智超

All these code are prepared by Zhichao Liang!

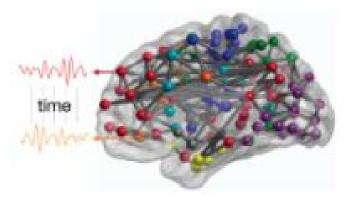
Download the Data & Code:

https://github.com/ncclabsu stech/NM_workshop

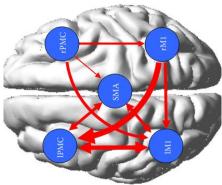
Brain networks at different scales



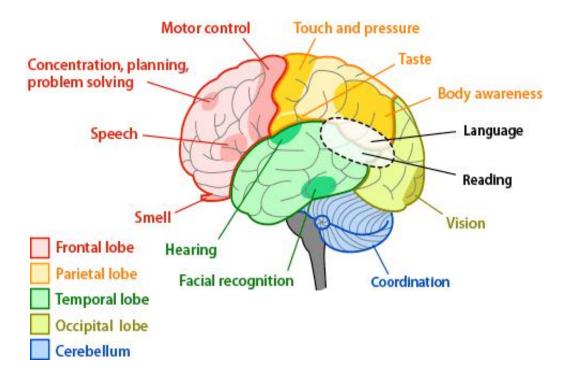
Brain Networks


Structural Connectivity (SC): Anatomical connections

- Synapses, fiber pathways ...
- Functional Connectivity (FC): Statistical dependencies
 Correlation, coherence, phase locking index ...
- Effective Connectivity (EC): Causal interactions
 - Granger causality, dynamical models ...

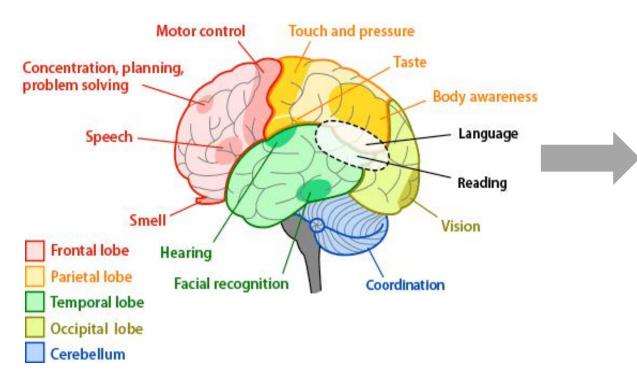

Structural Connectivity

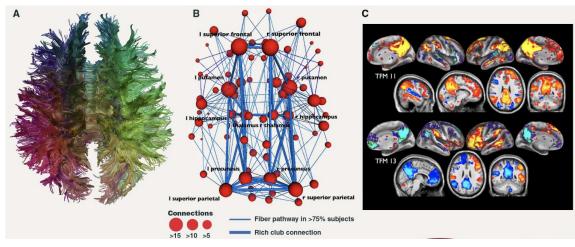
Functional Connectivity



Effective Connectivity

Functionality emerges from connectivity

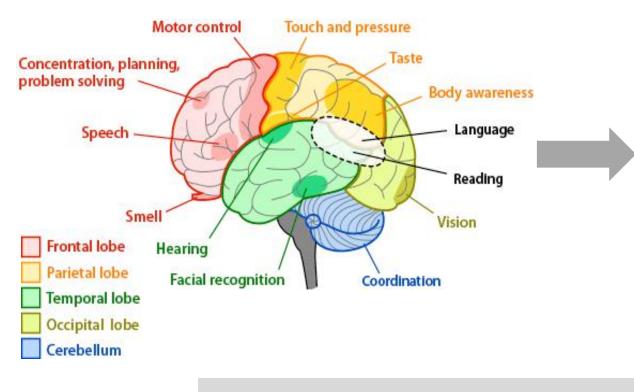

Brain regions and functions

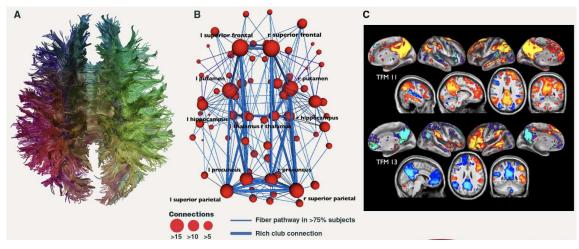


Functionality emerges from connectivity

Brain regions and functions

Brain Connectivity


de Schotten and Forkel, 2022, Science Axer and Amunts, 2022, Science Leergaard and Bjaalie, 2022, Science Oh et al., 2014, Nature Park & Friston, 2013, Sicnece



Functionality emerges from connectivity

Brain regions and functions

Brain Connectivity

de Schotten and Forkel, 2022, Science Axer and Amunts, 2022, Science Leergaard and Bjaalie, 2022, Science Oh et al., 2014, Nature Park & Friston, 2013, Sicnece

□ Structure is invariant in a short time.

□ Function is highly dynamical and flexible.

Q: How does the invariant brain structure support instantly-changing brain functions?

Relationship between structure and function

Brain structure (T1, T2, DTI images)

Brain functional dynamics (~10¹² neurons, ~10² brain regions)

Relationship between structure and function

Brain structure (T1, T2, DTI images)

Brain functional dynamics (~10¹² neurons, ~10² brain regions)

Some brain imaging datasets

HCP data (HCP-1000S release, 1000 participants with T1, DTI, resting-state fMRI, 23-task fMRI) www.humanconnectomeproject.org/data/hcp-project/

PNC: Philadelphia Neurodevelopmental Cohort https://www.med.upenn.edu/bbl/philadelphianeurodevelopmentalcohort.html

ADNI: Alzheimer's Disease Neuroimaging Initiative http://adni.loni.usc.edu/

MRI-GENIE: 急性缺血脑卒中数据集 http://www.resilientbrain.org/mrigenie.html

ABIDE: Autism Brain Imaging Data Exchange, around 2000 participants, rsfMRI https://fcon_1000.projects.nitrc.org/indi/abide/

Scientific Data (a journal where publishes open-source data)

Data have been acquired, what's next?

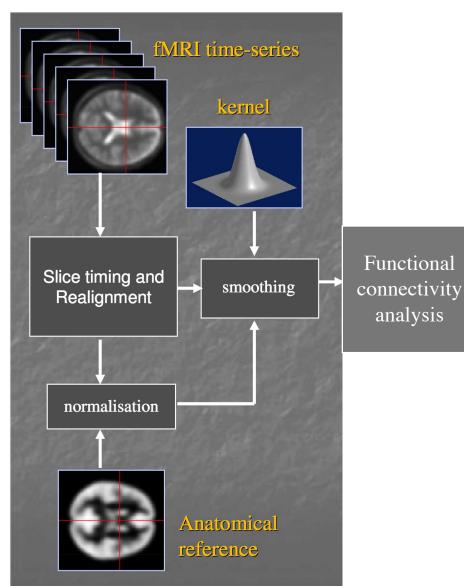
time

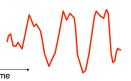
MATTERION

Casserbain Actions w/DISE. By Universal Press Syndicate

"OK, Mrs. Dunn. We'll slide you in there, scan your brain, and see if we can find out why you've been having these spells of claustrophobia." No matter the design, multiple volumes (made from multiple slices) have been acquired in time. Before getting data out, we need to make sure the signal from each voxel contains the right temporal and spatial information.

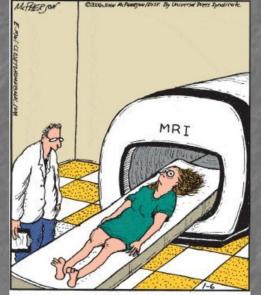
Data have been acquired, what's next?


time

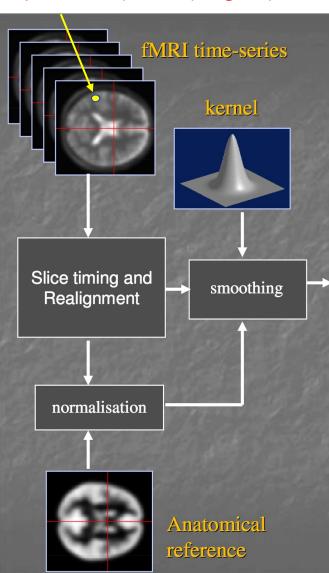

Casserbain Actions w/DISE. By Universal Press Syndicate

'OK, Mrs. Dunn. We'll slide you in there, scan your brain, and see if we can find out why you've been having these spells of claustrophobia."

matter the design, No multiple volumes (made from multiple slices) have acquired time. been in Before getting data out, we need to make sure the signal from each voxel contains the right temporal and spatial information.

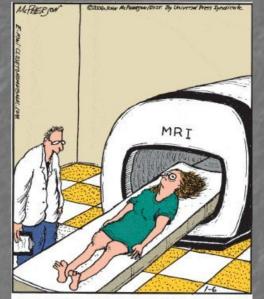


Each voxel contains a time-varying signal (blood oxygen-level dependent (BOLD) signal).

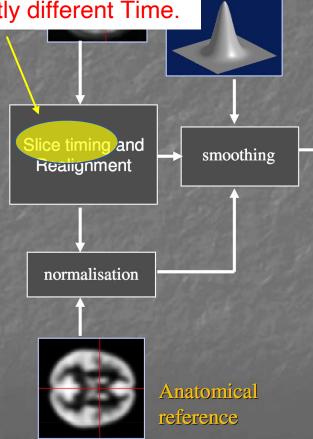

Data have been acquired, what's next?

time

"OK, Mrs. Dunn. We'll slide you in there, scan your brain, and see if we can find out why you've been having these spells of claustrophobia."


matter the design, NO multiple volumes (made from multiple slices) have acquired time. been in Before getting data out, we need to make sure the signal from each voxel contains the right temporal and spatial information.

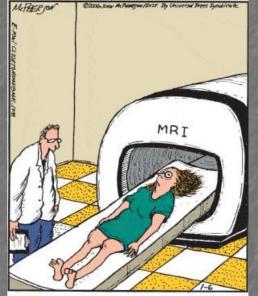
Picture credit: http://home.kpn.nl/raema005/functional_magnetic_resonance_imaging_fmri.html


Data have been acquired, what's next?

time

"OK, Mrs. Dunn. We'll slide you in there, scan your brain, and see if we can find out why you've been having these spells of claustrophobia." MRI scanning takes each slice separately. Each slice is scanned at a slightly different Time.

matter the design, NO multiple volumes (made from multiple slices) have acquired time. been in Before getting data out, we need to make sure the signal from each voxel contains the right temporal and spatial information.

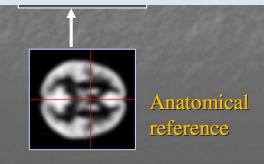


fMRI time-series

cernel

Picture credit: http://home.kpn.nl/raema005/functional_magnetic_resonance_imaging_fmri.html

Data have been acquired, what's next?


"OK, Mrs. Dunn. We'll slide you in there, scan your brain, and see if we can find out why you've been having these spells of claustrophobia."

No m

No matter the design,

Participants may move in the MR scanner. Each voxel need to realign to a consistent anatomical point.

> Before getting data out, we need to make sure the signal from each voxel contains the right temporal and spatial information.

Slice timing and

ealionmer

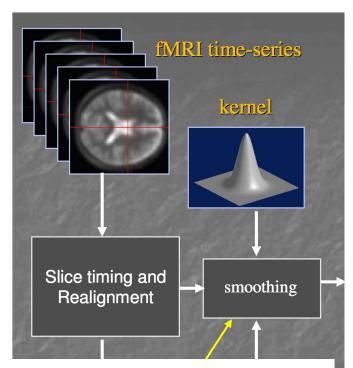
fMRI time-series

kernel

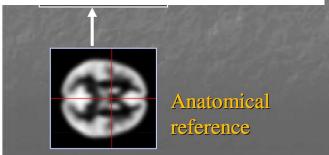
smoothing

Data have been acquired, what's next?

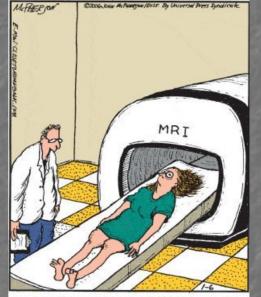
time

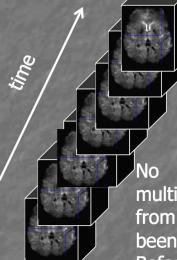

MATTERION

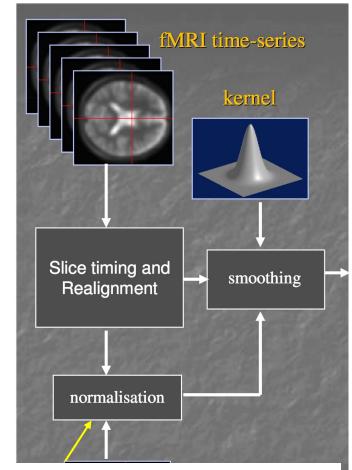
Cassocial Actuality /DIST. By Universal Press Syndicate


"OK, Mrs. Dunn. We'll slide you in there, scan your brain, and see if we can find out why you've been having these spells of claustrophobia." No matter the design, multiple volumes

from multiple slices been acquired in


Before getting data out, we need to make sure the signal from each voxel contains the right temporal and spatial information.


spatially smooth the fMRI data To improve the signal-to-noise ratio.

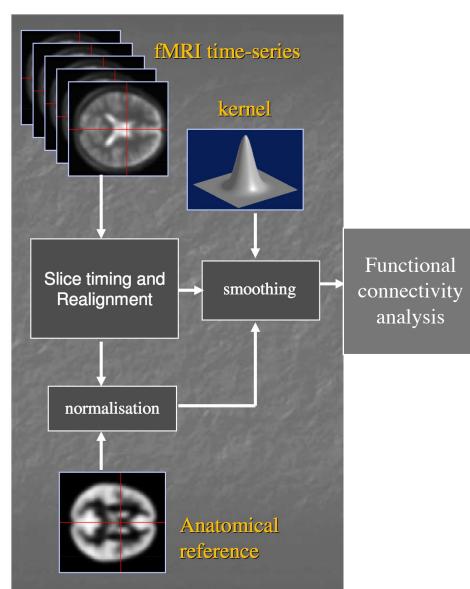

Data have been acquired, what's next?

"OK, Mrs. Dunn. We'll slide you in there, scan your brain, and see if we can find out why you've been having these spells of claustrophobia."

No matter the design, multiple volumes (made from multiple slices) have been acquired in time. Before getting data out, we need to make sure the signal

Everyone's brain is in different shape, different size. Normalization will rescale them to the standard space (MNI space).

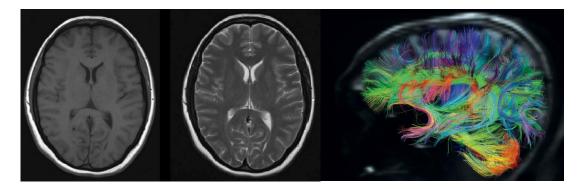
Data have been acquired, what's next?


time

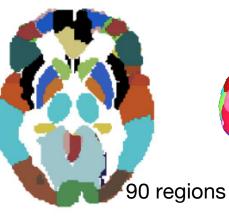
Casserbain Actions w/DISE. By Universal Press Syndicate

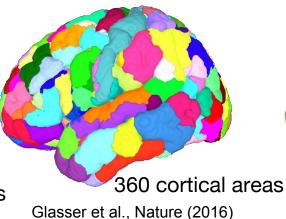
'OK, Mrs. Dunn. We'll slide you in there, scan your brain, and see if we can find out why you've been having these spells of claustrophobia."

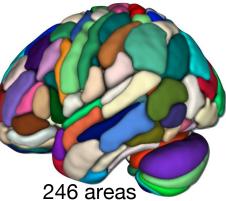
matter the design, No multiple volumes (made from multiple slices) have acquired time. been in Before getting data out, we need to make sure the signal from each voxel contains the right temporal and spatial information.


Picture credit: http://home.kpn.nl/raema005/functional_magnetic_resonance_imaging_fmri.html

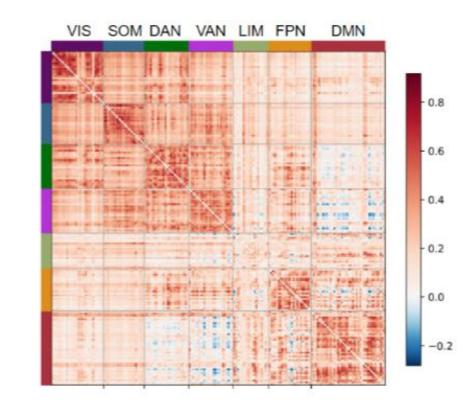
Relationship between structure and function


Brain structure (T1, T2, DTI images)


Brain functional dynamics (~10¹² neurons, ~10² brain regions)



Brainnectome atlas


fMRI

Relationship between structure and function

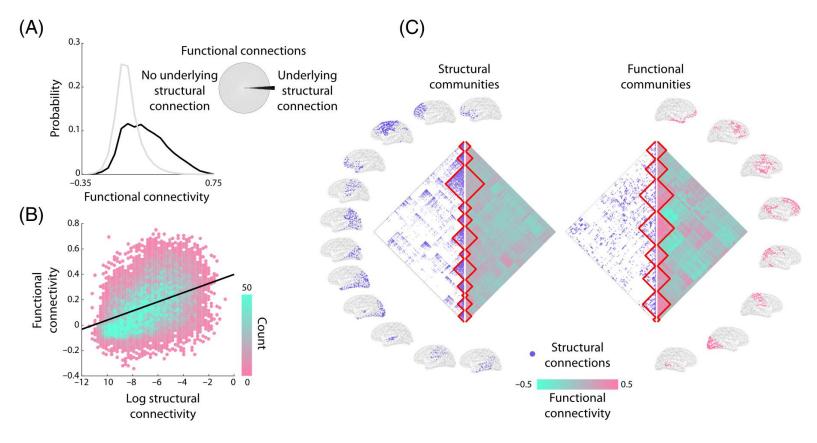
Brain structure (T1, T2, DTI images)

Brain functional dynamics (~10¹² neurons, ~10² brain regions)

VAN LIM FPN DMN VIS SOM DAN 1.0 0.8 0.6 0.4 0.2 0.0

Structural connectivity matrix

Functional connectivity matrix 24


Hands on!

Obtain the Structural Connectome (from DTI) & Functional Time Series (from fMRI)

Data & Code: https://github.com/ncclabsustech/NM_workshop

The relationship between brain structure and function

Correspondence between SC and FC

Laura E. Suárez, et al. (2020) Trends in Cognitive Sciences

Functional networks are not a one-to-one reflection of the structural networks. (Tewarie P,et al. NeuroImage, 2020)

How to uncover the higher-order interactions?

How are the higher-order interactions among regions form complex cognitive functions?

- Model-driven methods
- Data-driven methods

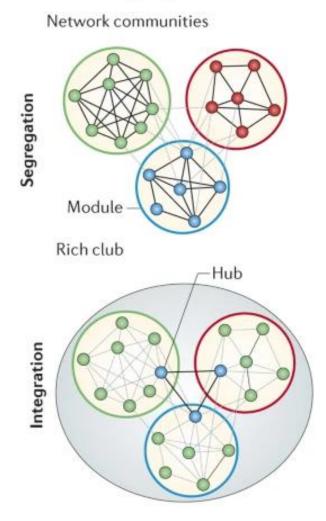
Newton's three laws of motion

Newton's first law - If a body is in the state of rest or is moving with a constant speed in a straight line, then the body will remain in the state of rest or keep moving in the straight line, unless and until it is acted upon by an external force.

$$\sum \overrightarrow{F_i} = m rac{\mathrm{d}ec{v}}{\mathrm{d}t} = 0$$

Newton's second law - The rate of change of momentum of a body is directly proportional to the force applied on it, and the momentum occurs in the direction of the net applied force. \vec{r}

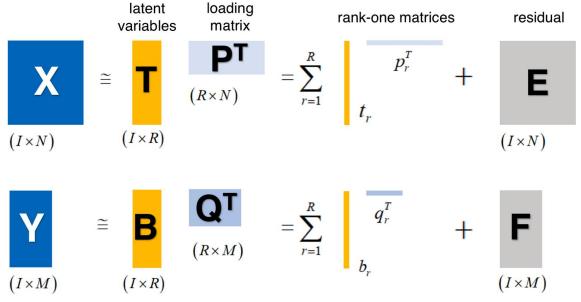
$$ec{F}=mec{a}$$


Newton's third law - To every action, there is always an equal and opposite reaction.

$$\overrightarrow{F_{12}}=-\overrightarrow{F_{21}}$$

Some principles of the brain

- Structure supports function: The topology of brain network (network communities and hubs) support functional segregation and integration. (Deco G, et al. Nature Reviews Neuroscience, 2015; Mišić B, et al. Cerebral Cortex, 2016)
- Anatomical modularity: each functional module is implemented in a dedicated, relatively small, and fairly circumscribed piece of neural hardware. (Bergeron, Philosophical Psychology, 2007)
- Optimal wiring: The layout of neurons in the brain is determined by multiple constraints, including biomorphic and metabolic limitations. (Michael L. Anderson. Behavioral and Brain Sciences, 2010)
- Tradeoffs among efficiency, energy cost, robustness, flexibility...
- Hierachy
- Sparse coding

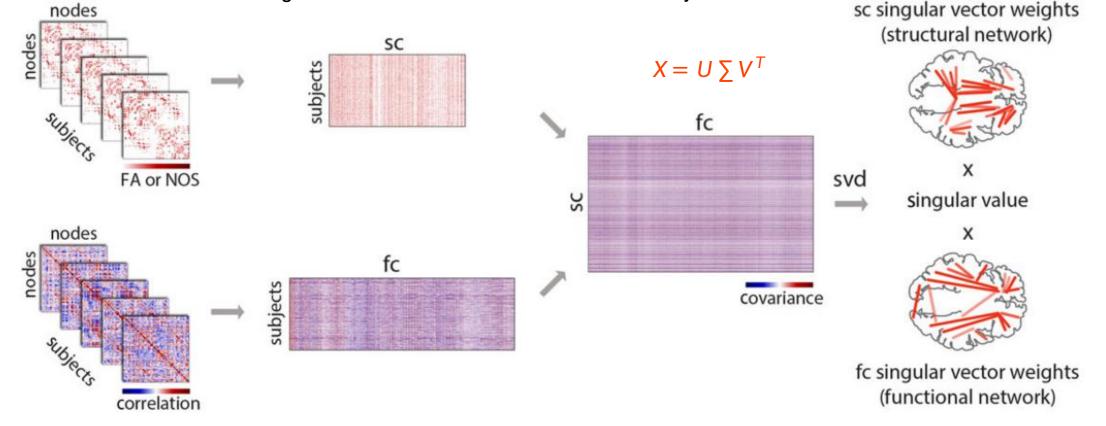


Deco G, et al. (2015) Nature Reviews Neuroscience

Q: How to integrate <u>the principles</u> into <u>brain network modeling?</u>

Partial Least Square (PLS) Analysis to study the relationship of two sets of variables

$$\begin{split} X &= TP^{T} + E = \sum_{r=1}^{R} t_{r} p_{r}^{T} + E \\ Y &= BQ^{T} + F = \sum_{r=1}^{R} b_{r} q_{r}^{T} + F \end{split} & \max \left[\cos \left(t, b \right) \right]^{2} = \max_{\{u,v\}} \left[\cos \left(Xu, Yv \right) \right]^{2} = \max_{\{u,v\}} \left(u^{T} X^{T} Yv \right)^{2} \\ s.t. \ u^{T} u &= 1; v^{T} v = 1 \end{split}$$



PLS is a multivariate statistical method to relate two sets of variables with each other.

The goal of PLS analysis is to simultaneously find <u>linear combinations</u> of variables in each block that maximally covary with each other.

Partial Least Square (PLS) Analysis to study Structure-Function relationship

A weighted combination of the <u>structural connections</u> and a weighted combination of <u>functional connectivity</u>

Bratislav Mišic et al. Cerebral Cortex, (2016) Network-level structure-function relationships in human neocortex ³¹

Some basic backgrounds of linear algebra

Eigendecomposition of a square matrix A: eigenvalues, eigenvectors

For a square matrix $A \in \mathbb{R}^{n \times n}$, its eigenvalue λ and eigenvector **x**:

$$A\mathbf{x} = \lambda \mathbf{x}$$

For all eigenvalues and eigenvectors, we can derive

$$A \begin{bmatrix} \mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_n \end{bmatrix} = \begin{bmatrix} \lambda_1 \mathbf{x}_1 \ \lambda_2 \mathbf{x}_2 \ \dots \ \lambda_n \mathbf{x}_n \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_n \end{bmatrix} \begin{bmatrix} \lambda_1 \ 0 \ \cdots \ 0 \\ 0 \ \lambda_2 \ \cdots \ 0 \\ \vdots \ \vdots \ \ddots \ \vdots \\ 0 \ 0 \ \cdots \ \lambda_n \end{bmatrix}$$

If the n eigenvalues exist, the eigendecomposition of A is

$$A = S\Lambda S^{-1} \tag{5}$$

Watch Gilbert Strange 22:

https://www.bilibili.com/video/BV1zx411g7gq?p=22

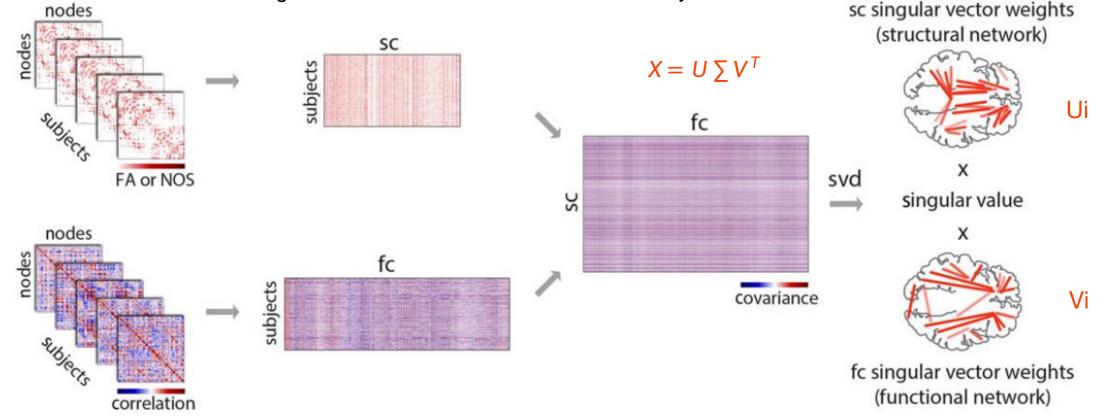
Some basic backgrounds of linear algebra

Singular value decomposition (SVD) of <u>any</u> matrix X (or its demeaned matrx HX)

• Singular Value Decomposition (SVD) on the matrix HX

$$HX = U\Sigma V^{T}$$
(3)

$$U^T U = \mathbf{I}_p, \quad V^T V = VV^T = \mathbf{I}_p, \quad \Sigma = diag([\sigma_1, \ldots, \sigma_p])$$

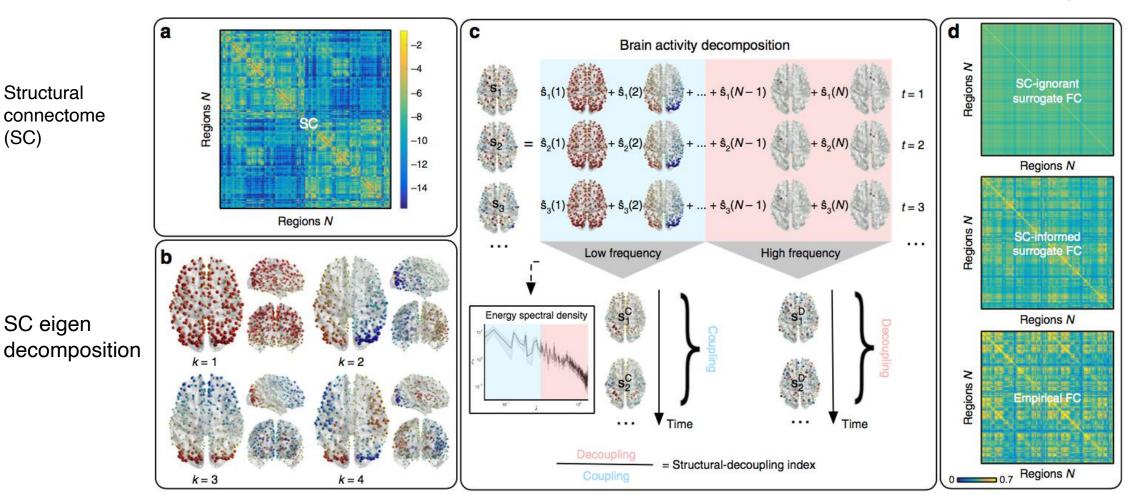

Substitute Eq. (3) to the covariance matrix S, we derive

$$S = \frac{1}{N} \mathbf{X}^{T} H H^{T} \mathbf{X} = \frac{1}{N} (HX)^{T} (HX)$$
$$= \frac{1}{N} (U\Sigma V^{T})^{T} U\Sigma V^{T} = \frac{1}{N} V\Sigma U^{T} U\Sigma V^{T} \qquad (4)$$
$$= \frac{1}{N} V\Sigma^{2} V^{T} \Longrightarrow \text{Eigendecoposition of } S$$

Watch Gilbert Strange 30: https://www.bilibili.com/video/BV1zx411g7gq?p=30

Partial Least Square (PLS) Analysis to study Structure-Function relationship

A weighted combination of the <u>structural connections</u> and a weighted combination of <u>functional connectivity</u>

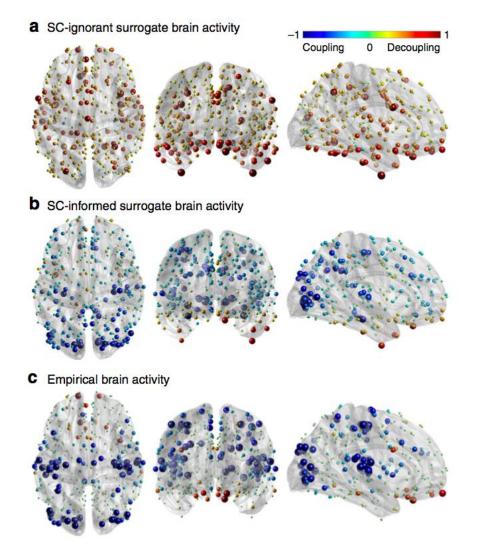

Bratislav Mišic et al. Cerebral Cortex, (2016) Network-level structure-function relationships in human neocortex ³⁴

Hands on!

Partial Least Square (PLS) Analysis to study Structure-Function relationship

Bratislav Mišic et al. Cerebral Cortex, (2016) Network-level structure-function relationships in human neocortex

Brain activity couples with Structural Connectome



Brain activity at every time point t (s_i) is written as a linear combination of eigenvectors.

Maria Giulia Preti et al. Nature Communications, (2019) Decoupling of brain function from structure reveals regional behavioral specialization in humans

(SC)

Brain activity couples/detaches with Structural Connectome

Two different patterns emerge:

 Functional activity significantly couples with the structural connectome

(Primary sensory and motor networks)

 Functional signals detach from the structure, identifying a high-level cognitive network (orbitofrontal, temporal, parietal areas)

Maria Giulia Preti et al. Nature Communications, (2019) Decoupling of brain function from structure reveals regional behavioral specialization in humans

Bridging the series expansion and eigenmode approaches

The existing theory supports that:

(1) Functional networks can be explained by a Taylor series expansion of the structural network, which we refer to as the series expansion approach.

(2) Functional networks can be explained by a weighted combination of the eigenmodes of the structural network, which is the so-called eigenmode approach.

Bridging the series expansion and eigenmode approaches

The existing theory supports that:

(1) Functional networks can be explained by a Taylor series expansion of the structural network, which we refer to as the series expansion approach.

(2) Functional networks can be explained by a weighted combination of the eigenmodes of the structural network, which is the so-called eigenmode approach.

(1) Series expansion approach

 $W \approx \sum^{d} \frac{c_m}{\|A^m\|} A^m$

W : functional connectivity matrix

A : structural connection matrix

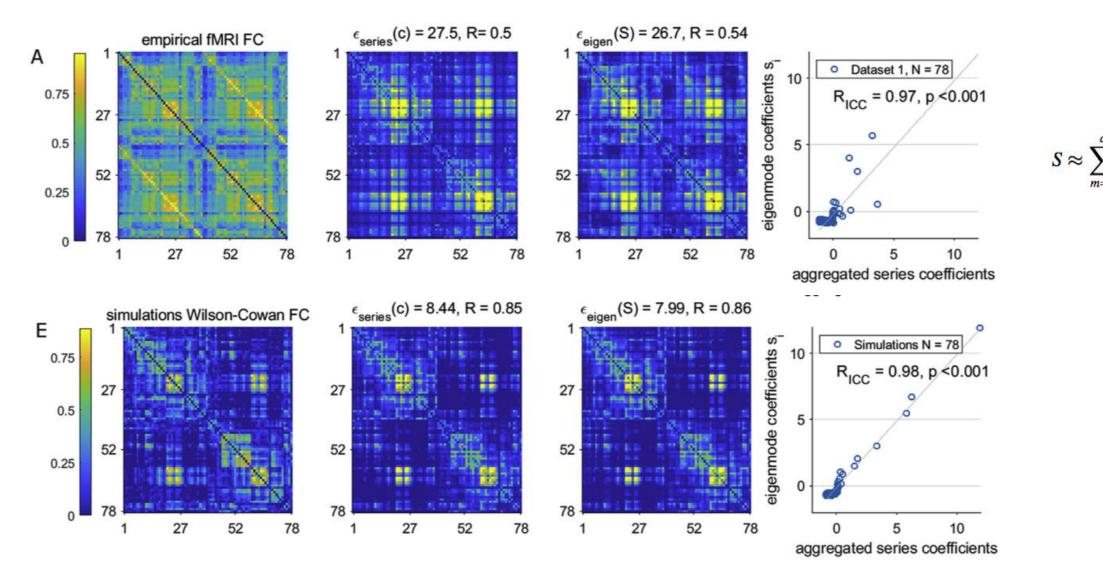
$$W \approx \sum_{m=1}^{d} \frac{c_m}{\|A^m\|_2} V D^m V^T$$

(2) Eigenmode approach

 $W \approx VSV^T$

Combining (1) and (2)

$$S pprox \sum_{m=1}^{d} rac{c_m}{\left\|A^m\right\|_2} D^m$$


It becomes an optimization problem to learn the coefficient vector c.

$$\varepsilon_{series}(c) = \left\| W - \sum_{m=1}^{d} \frac{c_m}{\|A^m\|_F} V D^m V^T \right\|_F$$

 $\boldsymbol{\varepsilon}_{eigen}(S) = \left\| \boldsymbol{W} - \boldsymbol{V} \boldsymbol{S} \boldsymbol{V}^T \right\|_F$

(Prejaas Tewarie et al. NeuroImage, 2020) ³⁹

Bridging the series expansion and eigenmode approaches

(Prejaas Tewarie et al. NeuroImage, 2020)

Hands on!

Python Implemenation of Structural-Decoupling Index

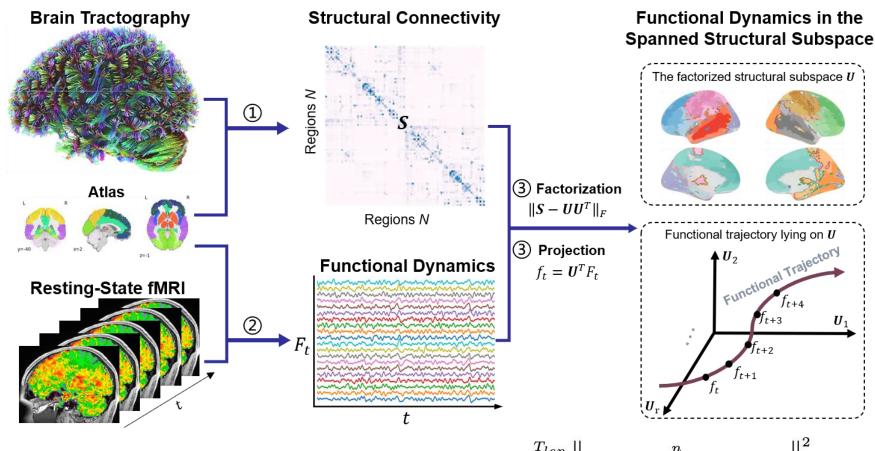
Maria Giulia Preti et al. Nature Communications, (2019) Decoupling of brain function from structure reveals regional behavioral specialization in humans

A fusion model to bridge brain structure and function

Some principles from neuroscience

1. There is psychological and physiological evidence for <u>parts-based representation</u> in the human brain (E. Wachsmuth et al. Cerebral Cortex, 1994; Deng Cai et al. TPAMI, 2011)

(Nonnegative Matrix Factorization) Nonnegative constraints lead to a parts-based representation because they allow only additive (not subtractive) combinations.


2. <u>Segregation and integration in the brain.</u> Human brain is a small-world network that is structured around <u>spatially distributed communities</u> with local computations, and the integration of the segregated information with network hubs ensure efficient information integration.

(Orthogonality) (Deco et al. 2015).

3. <u>Brain functional networks</u> are shaped and constrained by the underlying <u>structural network</u> (George C O'Neill et al. Neuroimage,2018; Prejaas Tewarie et al. NeuroImage, 2020)

(Matrix Projection) Brain functional dynamics are embedded in underlying structural spaces.

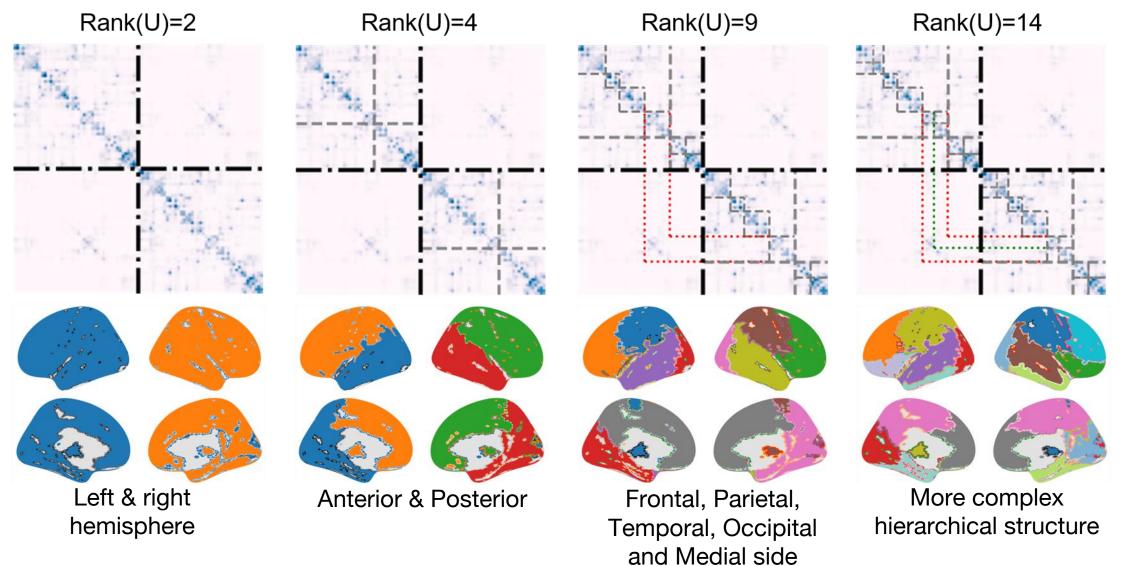
A fusion model to bridge brain structure and function

Some variables in model:

U: structure space

F_t: functional state dynamics f_t: projected functional state

A_i: transitioin matrix to capture information flow


We define a joint optimization problem.

Constrain the functional dynamics into the structure basis space *U*.

$$\min_{U,A} \sum_{t=1}^{T_{len}} \left\| U^T F_t - \sum_{i=1}^n A_i U^T F_{t-i} \right\|_F^2 + \lambda \left\| U U^T - S \right\|_F^2$$

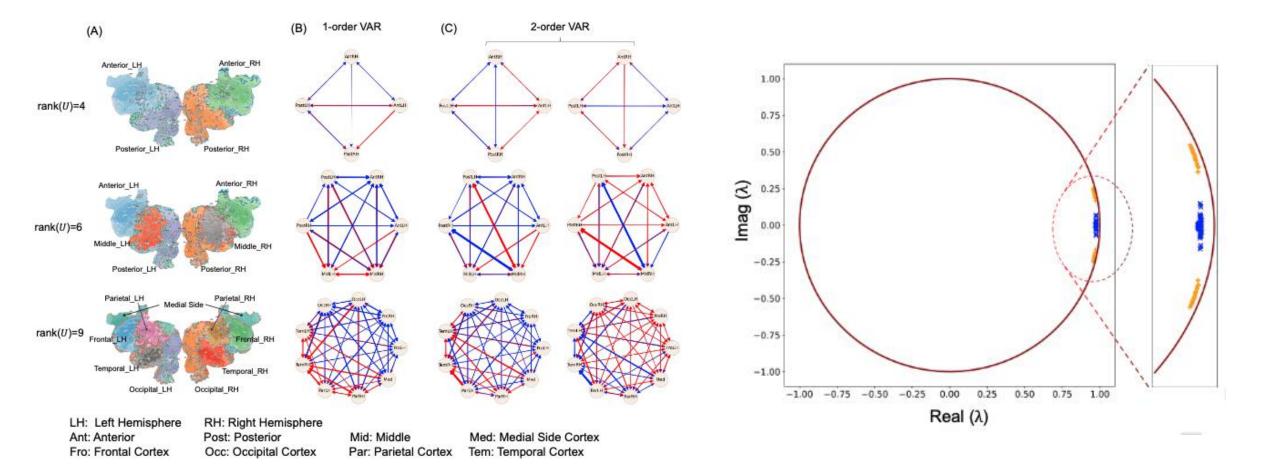
s.t. $U^T U = I_r$, $rank(U) = r$
 $U_{i,i} \ge 0$, $i \in [1, N]$ and $i \in [1, r]$

(Liang et al. in prep)

Results: Hierarchical structural subspace representation

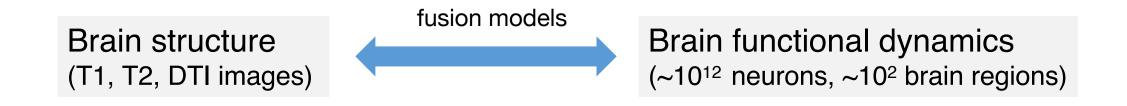
Increasing rank(U), the representation of structural subspace shows the complex hierarchical structural arrangement.

(Liang et al. in4prep)


Results: Functional integration within & cross segregated modules

- Functional integration at the different hierarchical layers of structural subspace have both excitatory and inhibitory connections.
- Functional integration shows similarity across hemispheres.

(Liang et al.⁴in prep)


Results: State transition A and its eigenvalue distribution

- The state transition is characterized by the matrix A.
- The distribution of eigenvalue of A suggests that the human brain is stable, critical.

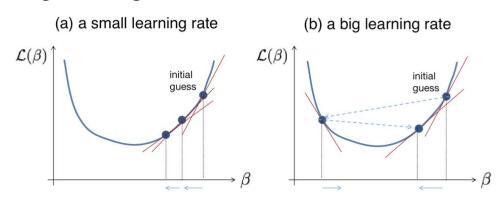
(Liang et al.⁴în prep)

Model-driven approach

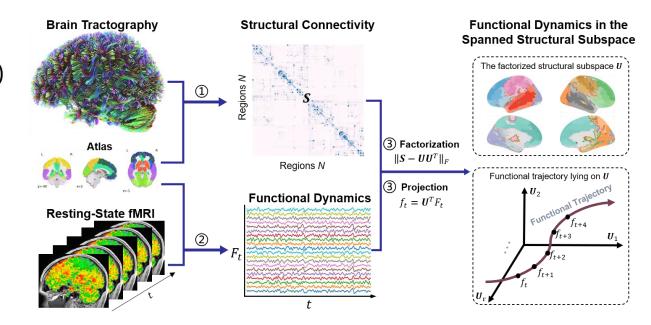
- Series expansion of SC: Functional networks can be explained by a Taylor series expansion of the structural network.
- Eigenmode decomposition of SC: Functional networks can be explained by a weighted combination of the eigenmodes of the structural network.
- Nonnegative Matrix Factorization of SC: Nonnegative constraints lead to a parts-based representation for they allow only additive combinations.
- Matrix Projection: Embedding brain functional dynamics into the underlying structural space.
- Structural subspace: The factorization results show the hierarchical topological arrangement with rank(U) increasing.

Hands on! 1. Pytorch tutorial of Numerical Optimization 2. Pytorch implementation of our methods

$$\mathcal{L}(\beta) = \frac{1}{n} \sum_{i=1}^{n} \left(y^{(i)} - \beta x^{(i)} \right)^2$$


- Analytical solution
- Numerical solution with gradient descent

Update rule:


$$\beta^{(j+1)} \longleftarrow \beta^{(j)} - \eta \frac{d\mathcal{L}(\beta)}{d\beta}.$$
 (5)

Here η is the *learning rate*.

Choosing a good η is important: (i) too small – slow convergence; (ii) too large – divergence.

$$\begin{split} \min_{U,A} \sum_{t=1}^{T_{len}} \left\| U^T F_t - \sum_{i=1}^n A_i U^T F_{t-i} \right\|_F^2 + \lambda \left\| U U^T - S \right\|_F^2 \\ \text{s.t. } U^T U = I_r, \\ U_{i,j} \ge 0 \quad i \in [1,N] \text{ and } j \in [1,r]. \end{split}$$

Hands on!

Pytorch tutorial of Numerical Optimization
 Pytorch implementation of our methods

Summary

Theory session (Brain network modeling)

- Basic concepts of neuroimages: T1/T2, DTI, fMRI, and their processing pipeline
- Brain network modelling: Structural/functional/effective network
- Structure-function modelling: bridging the brain structure and functional dynamics

Hands-on session (interlacing with theory session)

- 1. Data analysis pipeline: obtain structural connectome (DTI) and functional series (fMRI)
- 2. Brain network modelling:
 - Partial Least Square (PLS) Analysis to study Structure-Function relationship
 - Python Implemenation of Structural-Decoupling Index
- 3. Our fusion optimization method

Model-driven methods: Pros vs Cons

"All models are wrong, but some are useful."

---By George E. P. Box

Pros

- 1. White-box: model-driven methods are designed with consideration of the optimization objectives, neural mechanism and neuroscience priors.
- 2. Integration of neuroscience knowldge and statistical priors in modeldriven methods supports interpretability of results.

Cons:

- 1. Limited by the weak expressive power of simple models, performance of model-driven methods is usually not as good as deep learning.
- 2. The results and findings from the inaccurate models could be wrong.

Ads: BI&AI course on bilibili (for free)

https://space.bilibili.com/544658986/channel/collectiondetail?sid=699874

合集 18个视频 12	っ雨白白										
南方科技大学,神经计		(NCC lab)刘泉慧	影教授,BME5012 /	人脑智能与机器智能	系列(2022 Fall)					默认排	序 升序排序
Brain Intelligence ar Martine Brain Intelligence ar ABSTR ABSTR Intelligence ar ABSTR Intelligence ar ABSTR Intelligence ar ABSTR Intelligence ar ABSTR Intelligence ar ABSTR	d Artificial Intelligence 時時音報後 	■ ■ 周 周 周 周 日 日 日 日 日 日 日 日 日 日 日 日 日	器智 01:52:22	Brain Intelligence an 人胎智能 Lecture 3 - GO & Cutinging Statewo	ンチャス年 dd Artificial Intelligence 与小孫智能 BP & CNN & Handson Jule (1888) State careform Colorison		Anna Anna Anna Anna Anna Anna Anna	12	Contract Contract	使きませる Brain Intelligence and 人脑智能与 Lecture 6-Sonal Content of Content Content of Content Content of Content	Artificial Intelligence 机器智能 osensory System (別意意) orgentment
Lecture 1 - Introduction		Lecture 2 – Visual system		Lecture 3 – GD & BP & CNN & Hands–on		Lecture 4 – What do neurons in Al/brain learn?		Lecture 5 – Auditory systems		Lecture 6– Somatosensory systems	
1398	9 –6	D 545	9-7	446	9 –21	259	9 –23	D 323	9-29	300	I0-12
<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></list-item></section-header></section-header>		<u>کی باند دی</u> EEG Data Analysis Hands On 10/17/2022		Recap Lecture 6 – Somatosensory System - Interaction to somatic semantice: test sem werverse representation - Demonstration test semantices and te		These instructional levels of movement control <u> with an and and and and and and and and and </u>		使きをそれよそ Brain Intelligence and Artificial Intelligence 人防智能与机器智能 Lecture 11 - Data for deep learning Casering to UTIER Extend Set Setemation		Lecture 12 – Emotion in Brain & Al - Main Sea - Main	
Lecture 7– EEG data analysis		Lecture 8– EEG data analysis hands on		Lecture 9- Motor system 1		Lecture 10- Motor system 2		Lecture 11-Data for deep learning		Lecture 12- Emotion in Brain & Al	
262	© 10–13	D 148	© 10-26	97	© 10-26	D 147	© 10-26	129	© 11–7	62	• 11-21
Lecture 13 – Language processing • Mati Language • The Language system to Brain • Arrow Arrows • Mati Language systems • Mati Language performant • Mati Language pe		きまかれよ5 Brain Intelligence and Artificial Intelligence 人族智能与机器智能 Locius 14 - Sikep & Dreaming Dentire 14 - Sikep & Dreaming Dentire 15888 Rother And Reserver		Lecture 15 – Recurrent Neural Networks • Motivations for RNNs • Non architecture • Example 1: Character Sevel Language Model • Tans, Inni, Function, results • Image Galactioning • Example 2: Image Galactioning • Example 3: Image Galactioning with Attention • Long Short Time Memory (LSTM) • RNN for neural data processing • RNN for virtual experiments (cognitive tat		 第単語目的 12 12 14 15 15 16 17 16 16		01:50:19		で、 ままたもの Brain Intelligence and Artificial Intelligence 人陰智能与机器智能 Lecture 16 - Neuromodulation Damaying Lie (1958) Statine Stating Sta	
	processing	Lecture 14- Slee	o & Dreaming	Lecture 15 - Re	current neural	Lecture 16 -	fMRI hand-on	Lecture 17 – E	Brain structure,	Lecture 18 – Neur	omodulation
ecture 13-Language	processing		p	networks				function and b			

TA的今年和河桥列主、 古古科技十举2002秒禾举期 DME5012 // L 肺知能片机器知能》 刘自影

1: Introduction

▶ +新台内公司

- 2: Visual system
- 3: CNN (GD, BP, hands-on)
- 4: What do neurons learn?
- 5: Auditory system
- 6: Somatosensory system
- 7: EEG analysis
- 8: EEG analysis hands-on
- 9: Motor system 1
- 10: Motor syste, 2
- 11: Data for deep learning
- 12: Emotion in brain & Ai
- 13: language processing
- 14: sleep & dreaming
- 15: RNN
- 16: fMRI hands-on
- 17: Brain structure, function
- & behavior
- 18: Neuromodulation

Achknoledgements

Zhichao Liang (梁智超) All members in NCC lab

Thank you for your listening. Thank Prof. Jixing Li for hosting the workshop.

NCC lab的微信公众号

- - Youtube课程推荐
 - 科普文章
 - 学术论文解读