

College of Liberal Arts and Social Sciences

香港城市人學 CityUniversity of Hong Kong

IIm 澳·

Neuroimaging Methods Workshop

Incorporating mouse tracking in studies: From implementation to data modeling

Haiyan Wu (伍海燕)

haiyanwu@um.edu.mo Dec 10, 2022

Centre for Cognitive and Brain Sciences and Department of Psychology University of Macau

Outline

- Introduction of mouse tracking (MT)
- Research examples
- Memory: aIAT with MT
- Moral decisions with MT
- Other decisions with MT
- Implementations and data analysis
- Mouse tracker
- Opensesame
- Psychopy
- Combine with EEG and fMRI

Outline

- Introduction of mouse tracking (MT)
- Research examples
- Memory: aIAT with MT
- Moral decisions with MT
- Other decisions with MT
- Implementations and data analysis
- Mouse tracker
- Opensesame
- Psychopy
- Combine with EEG and fMRI

Compatibility with other methods

Introduction of mouse tracking (MT)

MALE

FEMALE

Chen, K., Wang, R., Huang, J., Gao, F., Yuan, Z., Qi, Y., & Wu, H. (2022). A resource for assessing dynamic binary choices in the adult brain using EEG and mouse-tracking. *Scientific data*, 9(1), 1-10.

Stillman et al. (2018)

Sullivan et al. (2015)

Sullivan et al. (2015)

Hand in motion reveals mind in motion

Hand in motion reveals mind in motion

Mouse trajectories – different stimuli

Caring

Aggressive

Mouse trajectories – different stimuli

15

Hand in motion reveals mind in motion

Hand in motion reveals mind in motion

Mouse tracking measures

Conflict between choices: MD & AUC

Stillman, P. E., Krajbich, I., & Ferguson, M. J. (2020). PNAS

Mouse tracking measures

Velocity & Acceleration & Angle

Mouse tracking measures

• Flips along the x coordinate & Entropy

Hand in motion reveals mind in motion

Hand in motion reveals mind in motion

Time course of a food choice

• Rate 160 different foods on three dimensions

tastiness

("How tasty is this food?")

- healthfulness ("How healthy is this food?")
- overall liking

("How much would you like to eat this food at the end of the experiment?")

 Rate binary choices among randomly selected pairs of foods.

Sullivan, N., Hutcherson, C., Harris, A., & Rangel, A. (2015). *Psychological science*

Time course of a food choice

choices between a tasty food (tasty but unhealthy) and a healthy food (healthy but not tasty)

Sullivan, N., Hutcherson, C., Harris, A., & Rangel, A. (2015). *Psychological science*

Tastiness comes first

Angle of every time point ~ value difference

Sullivan, N., Hutcherson, C., Harris, A., & Rangel, A. (2015). Psychological science

Tastiness comes first

Relative value signal (RVS)

due to a later entry of health to the decision process (at $t^*_H = 500 \text{ ms}$), it begins contributing to the RVS later than in the left example

Sullivan, N. J., & Huettel, S. A. (2021). Nature Human Behaviour

Mouse tracking in fMRI

Hehman, E., Ingbretsen, Z. A., & Freeman, J. B. (2014). Neuroimage

Outline

- Introduction of mouse tracking (MT)
- Research examples
- Memory: aIAT with MT
- Moral decisions with MT
- Other decisions with MT
- Implementations and data analysis
- Mouse tracker
- Opensesame
- Psychopy
- Combine with EEG and fMRI

Outline

- Introduction of mouse tracking (MT)
- Research examples
- Memory: aIAT with MT
- Moral decisions with MT
- Other decisions with MT
- Implementations and data analysis
- Mouse tracker
- Opensesame
- Psychopy
- Combine with EEG and fMRI

Research examples

	haiyan0305 Update README.md		ea612ff 17 hours ago	3 27 commits
	Part1	Add files via upload		18 hours ago
	Part2	Create MT-opensesame.md		20 hours ago
	Part3	Update psychopy example		20 hours ago
	Part4	Create MT-fMRI.md		20 hours ago
	Part5	Create preprocess.md		20 hours ago
Ľ	README.md	Update README.md		17 hours ago

i = README.md

MT_workshop

andlab workshop Paper 10.1038/s41597-022-01538-5 💙 @ANDlab3

From Affective, Neuroscience, and Decision-making Lab

0

Part 1: mouse tracker with IAT and moral decisions

Some code from Haiyan for mosue tracker and some R code contact: haiyanwu3@gmail.com

mouse tracking behavioral study the decision making task(with mouse tracker by Jon freeman) [https://www.mousetracker.org/]

Wu, H., Cao, S., Bai, C., Chen, K., & Mobbs, D. (2021). Moral by default? The dynamic tradeoffs between honesty and self-interest. [https://psyarxiv.com/kr4pw/]

Xu, X. J., Liu, X., Hu, X., & Wu, H. (2021). MT-aIAT: Integrating mouse tracking into memory-detection aIAT. [https://psyarxiv.com/ny9xq/]

Part 2: MT with opensesame

Some code from Haiyan contact: haiyanwu3@gmail.com

OpenSesame

Memory

aIAT(autobiographical Implicit Association Test) with MT

 The autobiographical Implicit Association Test (aIAT; Sartori et al., 2008) is a variant of the Implicit Association Test (IAT; Greenwald et al., 1998) that is used to establish whether an autobiographical memory is encoded in the respondent's mind/brain.

Block	Number of Trials	ltems Assigned to Left-Hand Key ("D")	Items Assigned to Right-Hand Key ("K")
I	20	Self	Others
2	20	Pleasant	Unpleasant
3	20	Self + pleasant	Others $+$ unpleasant
4	40	Self + pleasant	Others + unpleasant
5	20	Others	Self
6	20	Others + pleasant	${\sf Self}+{\sf unpleasant}$
7	40	Others + pleasant	Self + unpleasant

Note. The order of Blocks I, 3, 4 and Blocks 5, 6, 7 was counterbalanced across subjects.

Classic IAT with 7 blocks

The autobiographical IAT

Xinyi Julia Xu

Xu, X. J., Liu, X., Hu, X., & Wu, H. (2021, September 18).

The connectionist model

Sensory input

Sensory input

Bedder, R. L., Bush, D., Banakou, D., Peck, T., Slater, M., & Burgess, N. (2019). *Cognition* Xu, X. J., Liu, X., Hu, X., & Wu, H. (2021, September 18).

Regression Resuls

Angle θ ~ value difference

Sullivan, N., Hutcherson, C., Harris, A., & Rangel, A. (2015). *Psychological science* Xu, X. J., Liu, X., Hu, X., & Wu, H. (2021, September 18).

Outline

- Introduction of mouse tracking (MT)
- Research examples
- Memory: aIAT with MT
- Moral decisions with MT
- Other decisions with MT
- Implementations and data analysis
- Mouse tracker
- Opensesame
- Psychopy
- Combine with EEG and fMRI

Outline

Introduction of mouse tracking (MT)

Research examples

- Memory: aIAT with MT
- Moral decisions with MT
- Other decisions with MT
- Implementations and data analysis
- Mouse tracker
- Opensesame
- Psychopy
- Combine with EEG and fMRI

Moral

Example study 1

Moral by default? The dynamic tradeoffs between honesty and self-interest

- Before each block, there are two allocation options (A, B) for you and another people. You will send the option to other one and told him/her which option is better for him/her.
- For example, in this trial the A option is

you other 60 70

Instruction2

• click start by mouse

• you will see the two options, and may want tell player 2 the option B is better by lying

• Click one option you want to send to player2

Analysis

- The latency of the movement, total time of motion, Area under the Curve, Maximum pull towards the incorrect information etc.(by R);
- Mapping discrete choice, confidence, averaged trajectory for each condition;
- compute trajectory divergence, accumulated evidence, time related regression;

Combine MT with computational model

Computational model

$$U(M_{\rm s},M_{\rm o}) = \left[(\alpha - I \cdot \delta) M_{\rm s}^{\rho} + (1 - \alpha + I \cdot \delta) M_{\rm o}^{\rho} \right]^{\frac{1}{\rho}}$$

Alpha: relative weight between monetary payoffs for self and other

Delta: biasing effect of honesty concerns

Ra: elasticity of substitution between Ms and Mo

How to implement it in Mouse tracker?

		A		В		S_PROFIT		CORRECT	CONDITION
1	self	other	self	other	S_PROFIT		CORRECT		
- [13	3	7	5	A	1	В	2	conflict
- [13	16	17	3	В	2	A	1	conflict
- [12	3	4	12	A	1	В	2	conflict
- 1	8	5	4	19	Α	1	В	2	conflict
- [17	6	9	8	Α	1	В	2	conflict
- [7	12	12	8	В	2	A	1	conflict
- [1	6	8	10	В	2	В	2	NC
- 1	10	18	11	11	В	2	A	1	conflict
1	5	20	7	2	В	2	A	1	conflict
- 1	4	17	14	6	В	2	A	1	conflict
1	18	13	4	12	A	1	A	1	NC
- 1	20	5	6	7	Α	1	В	2	conflict
1	8	17	12	7	В	2	A	1	conflict
- 1	7	13	6	14	Α	1	В	2	conflict
Ĩ	15	5	6	10	Α	1	В	2	conflict
1	13	2	9	11	Α	1	В	2	conflict
Ī	5	12	6	3	В	2	A	1	conflict
1	1	11	19	14	В	2	В	2	NC
Ĩ	14	13	10	11	А	1	A	1	NC
1	10	12	14	7	В	2	A	1	conflict
1	1	16	13	8	В	2	A	1	conflict
1	2	7	13	8	В	2	В	2	NC
1	11	7	3	10	Α	1	В	2	conflict
1	10	8	11	12	В	2	В	2	NC
1	5	13	14	11	В	2	A	1	conflict
- [8	9	7	2	Α	1	A	1	NC
1	16	8	6	13	Α	1	В	2	conflict
1	15	5	3	11	A	1	В	2	conflict
- [4	10	5	16	В	2	В	2	NC
1	18	5	7	11	Α	1	В	2	conflict
- 1	6	9	15	8	В	2	A	1	conflict
1	16	15	20	14	В	2	A	1	conflict
1	9	13	16	8	В	2	A	1	conflict
1	12	9	6	16	Α	1	В	2	conflict
1	2	11	10	15	Α	1	В	2	conflict
Ī	18	20	2	7	А	1	A	1	NC
1	12	16	8	20	А	1	В	2	conflict
ľ	4	13	9	5	В	2	A	1	conflict
1	14	9	18	6	В	2	A	1	conflict
I.	8	12	3	16	А	1	В	2	conflict

1	screenres	1024	768					
2	startloc	-0.1;0.2;0.1;0.1						
3	stimloc	0;0.5						
4	stimhcenter	1						
5	stimvcenter	1						
6	resploc	-1;0.3;1.5;0.2 0.7	;0.3;1.5;0.2					
7	respbackcolor	0	0	0				
8	respfontname	Arial						
9	respfontcolor	255	255	255				
10	respfontsize	22						
11	respborder	1						
12	screencolor	255	255	255				
13	stimfontname	Arial						
14	stimfontcolor	0	0	0				
15	stimfontsize	28						
16	startfontname	Verdana						
17	startfontsize	18						
18	starttext	START						
19	autoorigin	1						
20	endscreen	end.jpg						
21	endexec	0						
22	ITI1	2000						
23	ITI2	2000						
24	respshowafter	0						
25	respshowafterdelay	0						
26	feedbacktime	0						
27	hovermode	0						
28	hovervspace	0.1						
29	hoverhspace	0.1						
30	timecut	0						
31	timecutmsg	TIME OUT!						
32	timeouttime	3000						
33	initcut	1500						
34	initcutmsg	Please start mo	ving earlier o	n even if	you are not	fully certain o	of a response	yet!
35	horizcut	0						
36	cursorspeed	10						
37	holdforcompound	1						
38	dragging	0						

D

41	type	stim	cond	rand	correct	default-com	resp_1	resp_2
42	0	M1.jpg	instruct					
43	0	mes2.jpg	instruct					
44	1	1.jpeg	conflict	1	2	1	Α	В
45	1	2.jpeg	conflict	1	1	2	A	В
46	1	3.jpeg	conflict	1	2	1	A	В
47	1	4.jpeg	conflict	1	2	1	A	В
48	1	5.jpeg	conflict	1	2	1	Α	в
49	1	6.jpeg	conflict	1	1	2	A	в
50	1	7.jpeg	NC	1	2	1	A	в
51	1	8.jpeg	conflict	1	1	2	A	в
52	1	9.jpeg	conflict	1	1	2	A	В
53	1	10.jpeg	conflict	1	1	2	Α	в
54	1	11.jpeg	NC	1	1	2	A	в
55	1	12.jpeg	conflict	1	2	1	A	в
56	1	13.jpeg	conflict	1	1	2	A	в
57	1	14.jpeg	conflict	1	2	1	Α	в
58	1	15.jpeg	conflict	1	2	1	A	в
59	1	16.jpeg	conflict	1	2	1	A	в
60	1	17.jpeg	conflict	1	1	2	A	в
61	1	18.jpeg	NC	1	2	1	A	в
62	1	19.jpeg	NC	1	1	2	Α	в
63	1	20.jpeg	conflict	1	1	2	A	в
64	1	21.jpeg	conflict	1	1	2	A	в
65	1	22.jpeg	NC	1	2	1	A	В
66	1	23.jpeg	conflict	1	2	1	A	в
67	1	24.jpeg	NC	1	2	1	Α	в
68	1	25.jpeg	conflict	1	1	2	A	в
69	1	26.jpeg	NC	1	1	2	A	в
70	1	27.jpeg	conflict	1	2	1	A	в
71	1	28.jpeg	conflict	1	2	1	A	в
72	1	29.jpeg	NC	1	2	1	Α	в
73	1	30.jpeg	conflict	1	2	1	A	в
74	1	31.jpeg	conflict	1	1	2	Α	В
75	1	32.jpeg	conflict	1	1	2	Α	В
76	1	33.jpeg	conflict	1	1	2	A	В
77	· · · · · · · · · · · · · · · · · · ·	24 inog	conflict	1	2	1	A	B

1 Trial structure

2 set up

3 Build Trials in csv

https://github.com/andlab-um/MT_workshop

Results

0.75

1

Example study 2

Reward and self-consistency: Dissecting the role of social brain and cognitive control in moral decisions

Reward seeking and self-consistency are both critical in moral decisions

Self-consistent Bayesian observer

Research Questions

How human trade off reward and consistency in weights and in timings 2 How reward and consistency are associated with the cognitive-control and reward related brain regions?

How does the activity in the related regions change along the sessions? how are mouse trajectories and brain activity patterns mediated by personal traits?

4

Framework

Xu et al (In Prep)

Dishonesty and honesty responses had different mouse trajectories

How human trade off reward and consistency in weights and in timings?

Consistency and reward: different weights, different timings

2

How are the weights of reward and consistency are associated with the **cognitive-control** and **reward** related brain regions?

Weights of consistency: correlated with cognitive control brain regions

Weights of reward: mediated by mouse tracking index AUC

How does the activity in the related regions change along the sessions?

Activations of cognitive control brain regions increased along the sessions

Xu et al (In Prep)

how are mouse trajectories and brain activity patterns mediated by personal traits?

Effects of personal traits on behavior and brain

Outline

- Introduction of mouse tracking (MT)
- Research examples
- Memory: aIAT with MT
- Moral decisions with MT
- Other decisions with MT
- Implementations and data analysis
- Mouse tracker
- Opensesame
- Psychopy
- Combine with EEG and fMRI

Outline

Introduction of mouse tracking (MT)

Research examples

- Memory: aIAT with MT
- Moral decisions with MT
- Other decisions with MT
- Implementations and data analysis
- Mouse tracker
- Opensesame
- Psychopy
- Combine with EEG and fMRI

Other Decisions

Chen, K., Wang, R., Huang, J., Gao, F., Yuan, Z., Qi, Y., & Wu, H. (2022). A resource for assessing dynamic binary choices in the adult brain using EEG and mouse-tracking. Scientific data, 9(1), 1-10.

Task Overview

Task	Description	Kun C
Resting-state	Measures EEG activity during rest.	
Food choice	A food preference task based on mouse tracking. Measures the dynamic process and corresponding EEG signals of food preferences.	·
Image choice	A semantic classification task for image based on mouse tracking. Measures the dynamic semantic process and corresponding EEG signals of binary decisions.	
Word choice	A semantic classification task for word based on mouse tracking. Measures the dynamic semantic process and corresponding EEG signals of binary decisions.	

Chen, K., Wang, R., Huang, J., Gao, F., Yuan, Z., Qi, Y., & Wu, H. (2022). A resource for assessing dynamic binary choices in the adult brain using EEG and mouse-tracking. Scientific data, 9(1), 1-10.

Data collection platform

а

С

10

12

14

Chen, K., Wang, R., Huang, J., Gao, F., Yuan, Z., Qi, Y., & Wu, H. (2022). A resource for assessing dynamic binary choices in the adult brain using EEG and mouse-tracking. Scientific data, 9(1), 1-10.

Kun Chen

Average mouse trajectories in different tasks

Chen, K., Wang, R., Huang, J., Gao, F., Yuan, Z., Qi, Y., & Wu, H. (2022). A resource for assessing dynamic binary choices in the adult brain using EEG and mouse-tracking. Scientific data, 9(1), 1-10.

Mouse tracking + EEG + DDM

(a) Perceptual DM (b) Value-Based DM EA (EEG) Centroparietal ERP (µV) 6 4 EA (model) Normalized activity (au) -5 4 2 2 0 -1.2 -0.8 -0.4 0 Time before response (s) -400 -200 -6000 Fast RT — Medium RT — Slow RT Time before response (ms)

Harris, A., & Hutcherson, C. A. (2022). Wiley Interdisciplinary Reviews: Cognitive Science
Hand in motion reveals mind in motion

- Introduction of mouse tracking (MT)
- Research examples
- Memory: aIAT with MT
- Moral decisions with MT
- Other decisions with MT
- Implementations and data analysis
- Mouse tracker
- Opensesame
- Psychopy
- Combine with EEG and fMRI

- Introduction of mouse tracking (MT)
- Research examples
- Memory: aIAT with MT
- Moral decisions with MT
- Other decisions with MT

- Mouse tracker
- Opensesame
- Psychopy
- Combine with EEG and fMRI

http://www.mousetracker.org/

MouseTracker is a freely available, user-friendly software package that allows researchers to record and analyze hand movements traveling toward potential responses on the screen (via the x, y coordinates of the computer mouse). By looking at the dynamics of how participants' hand movements settle into a response alternative—and how they may be partially pulled toward other alternatives—researchers glean valuable information about real-time cognitive processing. MouseTracker opens up a single reaction time into a continuous stream of rich cognitive output.

Implementation

https://github.com/andlab-um/MT_workshop/tree/main/Part1

° main → MT_workshop / Part1 /	Go to file Add file - ····	
📰 haiyan0305 Add files via upload 🔤		156c09e 18 hours ago 🕚 History
IAT and Moral.md	Create IAT and Moral.md	21 hours ago
🗅 exp2mt.zip	Add files via upload	18 hours ago
mousetracker.exe	Add files via upload	21 hours ago

- Introduction of mouse tracking (MT)
- Research examples
- Memory: aIAT with MT
- Moral decisions with MT
- Other decisions with MT

- Mouse tracker
- Opensesame
- Psychopy
- Combine with EEG and fMRI

OpenSesame

Edit on GitHub

• <u>https://osdoc.cogsci.nl/</u>

OpenSesame is a program to create experiments for psychology, neuroscience, and experimental economics. The latest stable version is 3.3.14 *Lentiform Loewenfeld*, released on Dec 7, 2022 (release notes).

• https://github.com/andlab-um/MT_workshop/tree/main/Part2

- Introduction of mouse tracking (MT)
- Research examples
- Memory: aIAT with MT
- Moral decisions with MT
- Other decisions with MT

- Mouse tracker
- Opensesame
- Psychopy
- Combine with EEG and fMRI

MT with Psychopy

History
urs ago
2

README.md

0

Wordchoice task

There are 3 blocks and 320 trials in total. The first 2 blocks include 107 trials and the last block includes 106 trials.

The participant need to press the "space" key to continue experiment after break.

See more information in the paper.

https://github.com/andlab-um/MT_workshop/tree/main/Part3

MT with Psychopy


```
# mouse tracking data process
class mouseData:
```

```
def cal_metrics(self):
    # Mouse Stats
    self.data["md"] = self.data.apply(lambda trial:
        squeak.max deviation(trial["nx"], trial["ny"]), axis=1)
```

```
# instantiation
food_df = mouseData(tmp_beh_path, foodtask)
food_df.preprocess()
```

https://github.com/andlab-um/MT_workshop/tree/main/Part3

. . .

- Introduction of mouse tracking (MT)
- Research examples
- Memory: aIAT with MT
- Moral decisions with MT
- Other decisions with MT

- Mouse tracker
- Opensesame
- Psychopy
- Combine with EEG and fMRI
- MT data processing
- Combine with DDM

Combine with EEG

93

EGI recording

EGI netstation initialization
if netstation:
 import egi.simple as egi
 ns = egi.Netstation()
 print("import pynetstation")
 # set ip address
 ns.connect("10.10.10.42", 55513)
 ns.BeginSession()
 print("connected to netstation")
 if recording:
 ns.StartRecording()
 print("start recording")

```
# send marker
def send_to_NS(key_):
    if netstation:
        ns.sync()
        ns.send_event(key=key_)
```

send_to_NS("0400")

https://github.com/andlab-um/MT_workshop

Combine with fMRI

Xu et al (In prep)

- Introduction of mouse tracking (MT)
- Research examples
- Memory: aIAT with MT
- Moral decisions with MT
- Other decisions with MT

- Mouse tracker
- Opensesame
- Psychopy
- Combine with EEG and fMRI
- MT data processing
- Combine with DDM

Tools & data Import

Mouse-tracking, the analysis of mouse movements in computerized experiments, is a method that is becoming increasingly popular in the cognitive sciences. The mousetrap package offers functions for importing, preprocessing, analyzing, aggregating, and visualizing mouse-tracking data.

A	В	С	D	E	IE	IF	IG	IH	11	RH	RI	RJ	RK	RL	RM	RN
	X_1	X_2	X_3	X_4	Y_1	Y_2	Y_3	Y_4	Y_5	T_1	T_2	T_3	T_4	T_5	T_6	T_7

iat <- read_bulk("iat", fun=read_mt, extension=".mt") iat <- mt_import_wide(iat)</pre>

🗢 iat	list [2] (S3: mousetrap)	List of length 2
🚺 data	list [13200 x 19] (S3: data.fra	A data.frame with 13200 rows and 19 columns
trajectories	integer [13200 x 5457 x 3]	0 0 0 0 0 15 15 16 15 16 15 31 31 31 31 31 31 31 46 46 47 47 47 46 62 62 63 62 63

Wulff, D. U., Kieslich, P. J., Henninger, F., Haslbeck, J. M. B., & Schulte-Mecklenbeck, M. (2021). PsyArXiv. 96

Preprocessing

- Remapping to the left side mt_data <- mt_remap_symmetric(mt_data)
- Temporal normalization: The duration of each trial was sliced into 101 identical time bins using linear interpolation to permit the average of their length across multiple trials.

mt_data <- mt_time_normalize(mt_data)</pre>

 Spatial normalization: standard coordinate space (top left: [-1, 1]; top right: [1,1])

```
mt_data <- mt_align_start_end(mt_data)</pre>
```

Basic processing

- Calculate the measures
- Plot the trajectories

https://github.com/andlab-um/MT_workshop

Part 5

ੇ main 👻	MT_workshop	Part5	sampledata	I
----------	-------------	-------	------------	---

haiyan0305 Add files via upload

۵	001_190228_0806.mt	Add files via upload
۵	002_190228_0833.mt	Add files via upload
۵	003_190228_0846.mt	Add files via upload
۵	004_190228_0937.mt	Add files via upload
۵	005_190228_1007.mt	Add files via upload
۵	006_190228_1037.mt	Add files via upload
۵	007_190228_1101.mt	Add files via upload
۵	008_190228_1133.mt	Add files via upload
۵	009_190228_1209.mt	Add files via upload
Ľ	010_190228_1236.mt	Add files via upload
Ľ	exp2	Create exp2

https://github.com/andlab-um/MT_workshop

31 - ```{r} 32 33 library(readbulk) 34 #setwd("~/Desktop/Mousetrackingdata/") setwd("~/Documents/Talk/cityU/MTbeha-master/3Exps/") 35 mt_data_raw2 <- read_bulk("exp2mt", fun=read_mt, extension=".mt")</pre> 36 37 38 mt_data2 <- mt_import_wide(mt_data_raw2)</pre> 39 mt_2 <- mt_remap_symmetric(mt_data2)</pre> mt_2 <- mt_align_start_end(mt_2)</pre> 40 41 mt_2 <- mt_time_normalize(mt_2)</pre> 42 mt_data2 <- mt_measures(mt_2)</pre> 43 44 - # Preprocessing 45 - ## Spatial transformations 46 - ```{r} 47 # Remap trajectories 48 mt_data2 <- mt_remap_symmetric(mt_data2)</pre> 49 50 # Align trajectories to common start position 51 mt_data2 <- mt_align_start(mt_data2, start=c(0,0))</pre> 52 53 54 - ## Resamplina C Chunk 3 🗘 36:34 Console Terminal × Jobs × ~/Documents/Talk/cityU/MTbeha-master/3Exps/ 🖗 Reading 002_190228_0833.mt Reading 003_190228_0846.mt Reading 004_190228_0937.mt Reading 005_190228_1007.mt Reading 006_190228_1037.mt Reading 007_190228_1101.mt Reading 008_190228_1133.mt Reading 009_190228_1209.mt Reading 010_190228_1236.mt Reading 011_190228_1310.mt Reading 012_190228_1338.mt Reading 013_190228_1402.mt Reading 014_190228_1427.mt Reading 015_190228_1504.mt Reading 016_190228_1608.mt Reading 017_190228_1637.mt Reading 018_190228_1706.mt Reading 019_190228_1729.mt Reading 020_190228_1807.mt Reading 021_190228_1858.mt Reading 022_190301_0817.mt Reading 023_190301_0836.mt

Part 5

References

- Freeman, J.B., Ambady, N. MouseTracker: Software for studying real-time mental processing using a computer mouse-tracking method. *Behavior Research Methods* **42**, 226–241 (2010).
- Stillman, P. E., Shen, X., & Ferguson, M. J. (2018). How mouse-tracking can advance social cognitive theory. *Trends in cognitive sciences*, 22(6), 531-543.
- Hehman, E., Stolier, R. M., & Freeman, J. B. (2015). Advanced mouse-tracking analytic techniques for enhancing psychological science. *Group Processes & Intergroup Relations*, 18(3), 384-401.
- Chen, K., Wang, R., Huang, J., Gao, F., Yuan, Z., Qi, Y., & Wu, H. (2022). A resource for assessing dynamic binary choices in the adult brain using EEG and mouse-tracking. *Scientific Data*, 9(1), 416.
- Wu, H., Cao, S., Bai, C., Chen, K., & Mobbs, D. (2021). Moral by default? The dynamic tradeoffs between honesty and self-interest. *preprint*
- Xu, X. J., Liu, X., Hu, X., & Wu, H. (2021). MT-aIAT: Integrating mouse tracking into memory-detection aIAT. *preprint*

Acknowledgement

Thanks for all the lab mates of ANDlab ! https://andlab-um.com/

We are hiring

- PhD博士生 (2023年2月28日截止)
- RA (长期有效)
- Postdoc博士后 (长期有效) Contact: haiyanwu@um.edu.mo

Xinyi Julia Xu

Kun Chen

深圳市科技创新委员会
广东省科学技术厅

- Introduction of mouse tracking (MT)
- Research examples
- Memory: aIAT with MT
- Moral decisions with MT
- Other decisions with MT
- Implementations and data analysis
- Mouse tracker
- Opensesame
- Psychopy
- Combine with EEG and fMRI
- MT data processing
- Combine with DDM

Xinyi Julia Xu