

Course Syllabus

offered by Department of Chemistry with effect from Semester A 2020/21

This form is for the completion by the <u>Course Leader</u>. The information provided on this form is the official record of the course. It will be used for the City University's database, various City University publications (including websites) and documentation for students and others as required.

Please refer to the Explanatory Notes on the various items of information required.

Prepared / Last Updated by:

Name:	Dr. Siu Gin Cheung	Academic Unit:	Department of Chemistry
Phone/email:	3442 7749 / bhsgche@cityu.edu.hk	Date:	18 November 2019

1

City University of Hong Kong Course Syllabus

offered by Department of Chemistry with effect from Semester A 2020/21

Part I Course Overview

Course Title:	Environmental Sampling and Risk Assessment
Course Code:	CHEM3038 (and CHEM3038A)
Course Duration:	1 semester
Credit Units:	4 (3) credits
Level:	B3
	Arts and Humanities
Proposed Area: (for GE courses only)	Study of Societies, Social and Business Organisations Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	Nil
Precursors : (Course Code and Title)	Nil
Equivalent Courses : (Course Code and Title)	BCH3038 (and BCH3038A) Environmental Sampling and Risk Assessment
Exclusive Courses : (Course Code and Title)	Nil

Note: CHEM3038A does not contain any practical component, and has a credit unit value of three (3).

Part II **Course Details**

1. Abstract

(A 150-word description about the course)

This course aims to:

- introduce students to the principles and techniques in environmental sampling; and risk assessment.
- provide students with an appreciation of the complex relationships of environmental variables and the heterogeneity of environment.
- help students to apply the principles and techniques of experimental and sampling design and data • analysis in environmental studies.
- provide experience in application of the principles and techniques in environmental risk assessment. •

Course Intended Learning Outcomes (CILOs) 2.

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of *performance.*)

No.	CILOs#	Weighting* (if applicable)	Discov curricu learnin (please approp	ery-enn lum rel g outco tick riate)	riched ated omes where
			A1	A2	A3
1.	Identify and articulate the principles in environmental sampling and analysis, and risk assessment, thus acquiring the ability to select the most appropriate approach under different ecological/environmental scenarios.		\checkmark	\checkmark	
2.	Apply sampling and chemical analytical techniques in environmental systems, including aquatic, terrestrial and atmospheric components by conducting relevant field-based studies to explore and discover the applicability and limitations of the said techniques and communicating the findings in laboratory report form.		~	~	~
3.	Analyze and interpret environmental data using appropriate statistical techniques and presenting the major findings in a report form and/or oral presentation format, as appropriate.			\checkmark	~
4.	Undertake human health and ecological risk assessments, and communicate the major findings to environmental managers and other stakeholders.			\checkmark	~
* If we	righting is assigned to CILOs, they should add up to 100%.	100%			

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

Attitude *A1*:

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: **Accomplishments**

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO N			Hours/week	
		1	2	3	4	(if applicable)
Lectures and	Teaching and learning activities will be	\checkmark				
tutorials	primarily centred around lectures and					
	tutorials in which students will discuss					
	various principles in environmental					
	sampling and analysis, and risk					
	assessment. This will be supplemented					
	with real-world examples.					
Tutorials,	During tutorials, discussion groups, and		\checkmark			
discussion	laboratory practical sessions students					
groups, and	will design sampling programmes and					
laboratory	conduct relevant chemical analyses on					
practical	field-collected samples and assess the					
sessions	applicability of the designed procedures.					
	The results will be written up by					
	individual students and submitted as					
	reports.					
Case studies	Students will work on case studies of			\checkmark		
	environmental analysis and will work					
	individually and in groups. They will					
	collate and analyse environmental					
	datasets from government reports or					
	published literature using appropriate					
	statistical techniques.					
Lectures,	Students will learn to undertake human				\checkmark	
tutorials, and	health and ecological risk assessments					
small group	based on data collected and analysed					
projects	using skills they have acquired during					
	the course through lectures, tutorials, and					
	small group projects during the					
	laboratory practicals. They will be					
	required to present their major findings					
	to other students in the class (who will					
	act as stakeholders).					

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting*	Remarks	
	1	2	3	4			
Continuous Assessment: <u>40</u> %	Continuous Assessment: <u>40</u> %						
Written Assignments	\checkmark		\checkmark				
Presentations		\checkmark	\checkmark		40%		
Laboratory Reports		\checkmark	\checkmark			not for CHEM3038A	
Examination: 60% (duration: 3 hours)							
* The weightings should add up to 100%.				100%			

Starting from Semester A, 2015-16, students must satisfy the following minimum passing requirement for courses offered by CHEM:

"A minimum of 40% in both coursework and examination components."

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Written	Completeness and	Strong evidence	Evidence of grasp	Student who is	Sufficient	Little evidence of
Assignments	correctness of	of original	of subject, some	profiting from the	familiarity with the	familiarity with the
	calculations/answers;	thinking; good	evidence of	university	subject matter to	subject matter;
	adequate application and	organization	critical capacity	experience;	enable the student	weakness in critical
	understanding of	capacity to	and analytic	understanding of	to progress without	and analytic skills;
	literature and class	analyse and	ability; reasonable	the subject; ability	repeating the	limited, or
	content; logic of	synthesize;	understanding of	to develop	course.	irrelevant use of
	argumentation	superior grasp of	issues; evidence	solutions to simple		literature
2. Presentations	Understanding of the	subject matter;	of familiarity with	problems in the		
	topic and material;	evidence of	literature.	material.		
	completeness of the	extensive				
	presentation; logic of the	knowledge base				
	presentation structure;					
	clarity of talk; ability to					
	discuss the presented					
	topic					
3. Laboratory	Completeness and ability					
Reports	to introduce the research					
	problem/topic and the					
	description of methods					
	used. Appropriate					
	presentation of					
	experimental results and					
	supportive use of					
	scientific literature for					
	discussion					
4. Examination	Completeness and					
	correctness of					
	calculations/answers;					
	logic of argumentation					
	and intelligent use of					
	course content/ original					
	thinking					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- Introduction to integrated environmental management systems; cost-benefit considerations; sustainable development.
- Techniques and equipment in environmental sampling and field experiments.
- Collection and analysis of field data, extrapolation and limitation of data.
- Bio-statistics. Experimental and sampling design: controls, random sampling, stratified random sampling, hierarchical sampling, field manipulation. Optimal sample size. Factorial design, Latin square, Power analysis.
- Prospective, retrospective, and comparative risk assessment of environmental contaminants.
- Hazard identification, dose-response assessment, exposure assessment, and risk characterization.
- Uncertainty analysis and probabilistic risk assessment.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Environmental risk assessment : a toxicological approach, Ted Simon (Boca Raton, FL, CRC
	Press, 2014)
2.	
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Principles of Environmental Sampling, Keith, L.H. (American Chemical Society, Washington
	D.C., 1998)
2.	Risks and Decisions for Conservation and Environmental Management, Burgman, M.
	(Cambridge University Press, 2005)
3.	Handbook of environmental risk assessment and management, edited by Calow, P. (Oxford:
	Blackwell Science, 1998)
4.	Online Resources:
	To be provided, as required, in lectures and tutorials.

A. Please specify the Gateway Education Programme Intended Learning Outcomes (PILOs) that the course is aligned to and relate them to the CILOs stated in Part II, Section 2 of this form:

	GE PILO	Please indicate which CILO(s) is/are related to this PILO, if any (can be more than one CILOs in each PILO)
PILO 1:	Demonstrate the capacity for self-directed learning	
PILO 2:	Explain the basic methodologies and techniques of inquiry of the arts and humanities, social sciences, business, and science and technology	
PILO 3:	Demonstrate critical thinking skills	
PILO 4:	Interpret information and numerical data	
PILO 5:	Produce structured, well-organised and fluent text	
PILO 6:	Demonstrate effective oral communication skills	
PILO 7:	Demonstrate an ability to work effectively in a team	
PILO 8:	Recognise important characteristics of their own culture(s) and at least one other culture, and their impact on global issues	
PILO 9:	Value ethical and socially responsible actions	
PILO 10:	Demonstrate the attitude and/or ability to accomplish discovery and/or innovation	

GE course leaders should cover the mandatory PILOs for the GE area (Area 1: Arts and Humanities; Area 2: Study of Societies, Social and Business Organisations; Area 3: Science and Technology) for which they have classified their course; for quality assurance purposes, they are advised to carefully consider if it is beneficial to claim any coverage of additional PILOs. General advice would be to restrict PILOs to only the essential ones. (Please refer to the curricular mapping of GE programme: <u>http://www.cityu.edu.hk/edge/ge/faculty/curricular_mapping.htm</u>.)

B. Please select an assessment task for collecting evidence of student achievement for quality assurance purposes. Please retain at least one sample of student achievement across a period of three years.

Selected Assessment Task