

Course Syllabus

offered by Department of Chemistry with effect from Semester A 2020/21

This form is for the completion by the <u>Course Leader</u>. The information provided on this form is the official record of the course. It will be used for the City University's database, various City University publications (including websites) and documentation for students and others as required.

Please refer to the Explanatory Notes on the various items of information required.

Prepared / Last Updated by:

Name:	Prof. Kenneth Kam-Wing Lo	Academic Unit:	Department of Chemistry	
Phone/email:	3442 7231 / bhkenlo@cityu.edu.hk	Date:	18 November 2019	

Course Syllabus Jun 2017

City University of Hong Kong Course Syllabus

offered by Department of Chemistry with effect from Semester A 2020/21

Part I Course Overv	view
Course Title:	Analytical Chemistry
Course Code:	CHEM3027 (and CHEM3027A)
Course Duration:	1 semester
Credit Units:	4 (3) credits
Level:	В3
Proposed Area:	Arts and Humanities Study of Societies, Social and Business Organisations
(for GE courses only) Medium of	English
Instruction: Medium of	English
Assessment: Prerequisites: (Course Code and Title)	Nil
Precursors: (Course Code and Title)	Nil
Equivalent Courses: (Course Code and Title)	BCH3027 (and BCH3027A) Analytical Chemistry
Exclusive Courses: (Course Code and Title)	Nil

Note: CHEM3027A does not contain any practical component, and has a credit unit value of three (3).

Part II Course Details

1. Abstract

(A 150-word description about the course)

This course aims to enable students to develop an understanding of the principles of analytical chemistry with an emphasis on the common analytical methods and instruments. It builds upon introductory courses in analytical chemistry and extends the scope to include the more in-depth principles of analytical chemistry and the functions of equipment for qualitative and quantitative analysis. In this course, students will have practical experience in analytical, environmental and separation techniques and designing innovative analytical methods, and opportunities of presentation of experimental results. This course offers students knowledge and skills that will allow them to undertake courses in analytical chemistry and instrumental analysis at a more advanced level. Additionally, it prepares graduates with knowledge, discovery capability, and experience in analytical chemistry for industrial applications, laboratory analysis and research studies.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs#	Weighting*	Discov	ery-eni	riched
		(if	curricu	lum re	lated
		applicable)	learnin	g outco	omes
			(please	tick	where
			approp	riate)	
			A1	A2	A3
1.	Apply the principles of common analytical techniques	40%	√	√	
	including chromatography, atomic spectroscopy, mass				
	spectrometry, potentiometry and fluorescence				
	spectroscopy.				
2.	Explain the functions of analytical instruments employed in	40%	√	√	
	the above techniques and design innovative analytical				
	methods.				
3.	Conduct analysis using analytical instruments and analyse	15%		√	
	the qualitative and quantitative results.				
4.	Select, design and justify the most appropriate techniques	5%			√
	for a range of samples.				
4 IC	-i-lating is president the CHO of the state of the 11 and 1000/	1000/			

^{*} If weighting is assigned to CILOs, they should add up to 100%.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CILO No.		Hours/week		
		1	2	3	4	(if applicable)
Lectures and	In lectures and tutorials, students will	✓				1.5
tutorials	develop an understanding on the					
	principles and applications of various					
	analytical techniques including					
	chromatography, atomic spectroscopy,					
	mass spectrometry, potentiometry and					
· · · · · ·	fluorescence spectroscopy.					4
Lectures and	In lectures and tutorials, students will		✓			1
tutorials	develop an understanding on the					
	functions of common analytical					
	instruments leading to the design of					
	innovative analytical methods.					_
Practical	Students, in the form of small groups			✓		2
sessions	(two to four students each group), will					
	take part in practical sessions in which					
	they will gain experience on using					
	instruments for analysis and develop					
	discovery capability. Students will					
	present, analyse and discuss their					
	experiment results in the form of written					
	reports.					
Tutorials	In tutorials, students will discuss and				\checkmark	0.5
	compare common analytical techniques,					
	design and select the most appropriate					
	techniques for different samples from a					
	discovery approach.					

Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.		Weighting*	Remarks		
	1	2	3	4		
Continuous Assessment: <u>30</u> %						
Assignments	✓	√			5%	
Tests	✓	√			10%	
Lab Reports			✓		15%	
Examination: <u>70</u> % (duration: 3 hours)						
* The weightings should add up to 100%.					100%	

^{*} The weightings should add up to 100%.

Starting from Semester A, 2015-16, students must satisfy the following minimum passing requirement for courses offered by CHEM:

"A minimum of 40% in both coursework and examination components."

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
1. Assignments	ABILITY to develop an understanding on principles of analytical techniques	(A+, A, A-) High	(B+, B, B-) Significant	(C+, C, C-) Moderate	(D) Basic	(F) Not even reaching marginal levels
2. Tests	ABILITY to describe and explain basic concepts of analytical chemistry to solve problems	High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Lab Reports	ABILITY to conduct analytical chemistry experiments, and present and discuss results in written reports	High	Significant	Moderate	Basic	Not even reaching marginal levels
4. Examination	ABILITY to describe, explain, and integrate concepts of analytical chemistry and apply them to solve problems	High	Significant	Moderate	Basic	Not even reaching marginal levels

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Chromatographic Separations

Theory of chromatography.

Gas Chromatography

Principles. Carrier gases, stationary phases and detectors. Applications. GLC and GSC.

High Performance Liquid Chromatography

Principles. Instrumentation. Mobile and stationary phases. Partition, bonded-phase, adsorption, ion-exchange and size-exclusion chromatography. Applications.

Atomic Spectrometry

Principles. Instrumentation. Interferences. Effects of temperature. Applications.

Mass Spectrometry

Principles. Ion sources, mass analysers and transducers. Applications.

Potentiometry

Principles. Reference and indicator electrodes. Glass electrodes. Ion-selective electrodes. Applications.

Fluorescence Spectroscopy

Principles. Instrumentation. Applications.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	
2.	
3.	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Fundamentals of Analytical Chemistry 9th Edition, Douglas A. Skoog, Donald M.
	West, F. James Holler and Stanley R. Crouch, Brooks Cole, 2014.
2.	Principles of Instrumental Analysis 7th Edition, Douglas A. Skoog, F. James Holler and
	Stanley R. Crouch, Brooks Cole, 2017.

A. Please specify the Gateway Education Programme Intended Learning Outcomes (PILOs) that the course is aligned to and relate them to the CILOs stated in Part II, Section 2 of this form:

	GE PILO	Please indicate which CILO(s) is/are related to this PILO, if any (can be more than one CILOs in each PILO)
PILO 1:	Demonstrate the capacity for self-directed learning	
PILO 2:	Explain the basic methodologies and techniques of inquiry of the arts and humanities, social sciences, business, and science and technology	
PILO 3:	Demonstrate critical thinking skills	
PILO 4:	Interpret information and numerical data	
PILO 5:	Produce structured, well-organised and fluent text	
PILO 6:	Demonstrate effective oral communication skills	
PILO 7:	Demonstrate an ability to work effectively in a team	
PILO 8:	Recognise important characteristics of their own culture(s) and at least one other culture, and their impact on global issues	
PILO 9:	Value ethical and socially responsible actions	
PILO 10	: Demonstrate the attitude and/or ability to accomplish discovery and/or innovation	

GE course leaders should cover the mandatory PILOs for the GE area (Area 1: Arts and Humanities; Area 2: Study of Societies, Social and Business Organisations; Area 3: Science and Technology) for which they have classified their course; for quality assurance purposes, they are advised to carefully consider if it is beneficial to claim any coverage of additional PILOs. General advice would be to restrict PILOs to only the essential ones. (Please refer to the curricular mapping of GE programme: http://www.cityu.edu.hk/edge/ge/faculty/curricular mapping.htm.)

B. Please select an assessment task for collecting evidence of student achievement for quality assurance purposes. Please retain at least one sample of student achievement across a period of three years.

Selected Assessment Task				