MA2185: DISCRETE MATHEMATICS

Effective Term
Semester A 2022/23

Part I Course Overview

Course Title
Discrete Mathematics

Subject Code
MA - Mathematics

Course Number
2185

Academic Unit
Mathematics (MA)

College/School
College of Science (SI)

Course Duration
One Semester

Credit Units
3

Level
B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction
English

Medium of Assessment
English

Prerequisites
Nil

Precursors
Nil

Equivalent Courses
Nil

Exclusive Courses
MA2144 Discrete Mathematics
MA2504 Discrete Mathematics
MA2509 Discrete Mathematics
Part II Course Details

Abstract
This course aims to introduce basic ideas of discrete mathematics such as formal mathematical reasoning techniques, basic counting techniques and their applications, number theory and graph theory for computer science students. The objective is intended for students to understand the basic theory and some applications of discrete mathematics. The course gives students training in the ability to think quantitatively and analyse problems critically.

Course Intended Learning Outcomes (CILOs)

<table>
<thead>
<tr>
<th>CILOs</th>
<th>Weighting (if app.)</th>
<th>DEC-A1</th>
<th>DEC-A2</th>
<th>DEC-A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. explain at high levels concepts from discrete mathematics.</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. implement basic operations in discrete mathematics.</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3. use formal mathematical reasoning techniques and basic counting techniques.</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4. develop mathematical models through relations, combinatorics, graph theory, and apply mathematical methods to a range of problems in computer sciences.</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>5. the combination of CILOs 1-4</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

A1: Attitude
Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability
Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments
Demonstrate accomplishment of discovery/innovation/creativity through producing/constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

<table>
<thead>
<tr>
<th>TLAs</th>
<th>Brief Description</th>
<th>CILO No.</th>
<th>Hours/week (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lectures Learning through teaching is primarily based on lectures.</td>
<td>1, 2, 3, 4, 5</td>
<td>40 hours in total</td>
</tr>
<tr>
<td>2</td>
<td>Tutorials Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.</td>
<td>2</td>
<td>4 hours</td>
</tr>
<tr>
<td>3</td>
<td>Tutorials Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.</td>
<td>3</td>
<td>4 hours</td>
</tr>
<tr>
<td></td>
<td>Tutorials</td>
<td>Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>Tutorials</td>
<td>Learning through tutorials is primarily based on interactive problem solving allowing instant feedback.</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>Assignments</td>
<td>Learning through take-home assignments helps students understand basic mathematical concepts and techniques of discrete mathematics, and apply mathematical methods to some problems in computer sciences.</td>
<td>1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>7</td>
<td>Online applications</td>
<td>Learning through online examples for applications helps students apply discrete mathematics to some problems in computer sciences.</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>Math Help Centre</td>
<td>Learning activities in Math Help Centre provides students extra help.</td>
<td>2, 3, 4</td>
</tr>
</tbody>
</table>

Assessment Tasks / Activities (ATs)

<table>
<thead>
<tr>
<th>ATs</th>
<th>CILO No.</th>
<th>Weighting (%)</th>
<th>Remarks (e.g. Parameter for GenAI use)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Test</td>
<td>2, 3</td>
<td>15</td>
<td>Questions are designed for the first part of the course to see how well the students have learned the basic concepts, techniques and some applications of discrete mathematics.</td>
</tr>
<tr>
<td>2 Hand-in assignments</td>
<td>1, 2, 3, 4</td>
<td>15</td>
<td>These are skills based assessment to see whether the students are familiar with the basic concepts, techniques of discrete mathematics and some applications in computer sciences.</td>
</tr>
</tbody>
</table>
The assignments provide students chances to demonstrate their achievements on discrete mathematics learned in this course.

<table>
<thead>
<tr>
<th>3</th>
<th>Formative take-home assignments</th>
<th>5</th>
<th>0</th>
</tr>
</thead>
</table>

Continuous Assessment (%)
30

Examination (%)
70

Examination Duration (Hours)
2

Additional Information for ATs
30% Coursework
70% Examination (Duration: 2 hours, at the end of the semester)
For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Rubrics (AR)

Assessment Task
1. Test

Criterion
ABILITY to SOLVE in DETAIL and with ACCURACY the posed QUESTIONS

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels

Assessment Task
2. Hand-in assignments

Criterion
ABILITY to SOLVE in DETAIL and with ACCURACY the posed QUESTIONS

Excellent (A+, A, A-)
High
Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels

Assessment Task
3. Formative take-home assignments

Criterion
ABILITY to SOLVE in DETAIL and with ACCURACY the posed QUESTIONS

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels

Assessment Task
4. Examination

Criterion
ABILITY to SOLVE in DETAIL and with ACCURACY the posed QUESTIONS

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic
Part III Other Information

Keyword Syllabus

- Number Theory: Introduction to crypto, modulus operation, and finite group. Inverse and GCD.
- Graph Theory: Graph definition and properties. Euler and Hamiltonian circuits. Graph coloring. Planarity.

Reading List

Compulsory Readings

<table>
<thead>
<tr>
<th>Title</th>
</tr>
</thead>
</table>

Additional Readings

<table>
<thead>
<tr>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>