CS4286: INTERNET SECURITY AND E-COMMERCE PROTOCOLS

Effective Term
Semester A 2022/23

Part I Course Overview

Course Title
Internet Security and e-Commerce Protocols

Subject Code
CS - Computer Science

Course Number
4286

Academic Unit
Computer Science (CS)

College/School
College of Engineering (EG)

Course Duration
One Semester

Credit Units
3

Level
B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction
English

Medium of Assessment
English

Prerequisites
CS3201 Computer Networks or
CHEM2808 Forensics and Modern Society or
CHEM2809 Science Versus Crime
(For students intending to take a Minor in Forensic Studies)
or equivalent

Precursors
Nil

Equivalent Courses
Nil

Exclusive Courses
Nil
Part II Course Details

Abstract
This course aims to provide an understanding of information security. Students are expected to gain a broad understanding of information security with the goal of recognising security problems and discovering the security requirements of current computer systems. The course explores existing security mechanisms and offers students the opportunity to evaluate and design techniques for enforcing computer and network security and developing secure e-commerce protocols.

Course Intended Learning Outcomes (CILOs)

<table>
<thead>
<tr>
<th>CILOs</th>
<th>Weighting (if app.)</th>
<th>DEC-A1</th>
<th>DEC-A2</th>
<th>DEC-A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Identify the security requirements of various security systems.</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2</td>
<td>Make critique and assess the security threats of systems against various attacks and identify potential security problems on Internet services and communications.</td>
<td>x</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>3</td>
<td>Create the design of secure e-commerce protocols or systems using cryptographic algorithms and protocols.</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>4</td>
<td>Evaluate and critique the security and performance of security algorithms and protocols, and e-commerce systems.</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

A1: Attitude
Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability
Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments
Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

<table>
<thead>
<tr>
<th>TLAs</th>
<th>Brief Description</th>
<th>CILO No.</th>
<th>Hours/week (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lectures</td>
<td>1, 2, 3, 4</td>
<td>3 hours/week</td>
</tr>
<tr>
<td></td>
<td>The lectures focus on key topics of information security. Additional examples and case studies will be discussed.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Tutorials</td>
<td>1, 2, 3, 4</td>
<td>8 hours/semester</td>
</tr>
<tr>
<td></td>
<td>Students work on problems and exercises related to the topics taught in lectures.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Assignments
Assignments provide opportunity to solve selected theoretical and practical problems related to course topics.
1, 2, 3, 4

Mid-term quiz to evaluate understanding of course topics.
1, 2, 3, 4

Assessment Tasks / Activities (ATs)

<table>
<thead>
<tr>
<th>ATs</th>
<th>CILO No.</th>
<th>Weighting (%)</th>
<th>Remarks (e.g. Parameter for GenAI use)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignments</td>
<td>1, 2, 3, 4</td>
<td>20</td>
<td>3 Problem Sets</td>
</tr>
<tr>
<td>Mid-term Test</td>
<td>1, 2, 3, 4</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Continuous Assessment (%)
30

Examination (%)
70

Examination Duration (Hours)
2

Additional Information for ATs
For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Rubrics (AR)

Assessment Task
Mid-term Test

Criterion
Ability to explain and apply information security principles

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels

Assessment Task
Assignments
Criterion
Exhibit understanding of information security principles in evaluating and designing secure systems

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels

Assessment Task
Assignments

Criterion
Demonstrate ability to engage with information security principles in real-world applications

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels

Assessment Task
Examination

Criterion
Ability to explain information security principles and also demonstrate the ability to evaluate and design aspects of secure systems

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant
Part III Other Information

Keyword Syllabus
A selection of topics from the following: network security, computer security, malicious software, access control, firewall, intrusion detection systems, classical cryptography, symmetric-key encryption, DES, AES, public key cryptography, digital signature, digital certificate, message authentication, hash functions, RSA, ECC, SHA-1, SHA-256, PKI, authentication and key establishment protocols, SSL, PEM, PGP, IPSec, IKE, e-cash, micropayment, SET, electronic voting, electronic auction, smart card, etc.

Syllabus
A selection of topics from the following:

• Network security and computer security
 Basic notions and techniques of DDoS, phishing attacks, malicious software such as worms, Trojan horses and viruses, firewall, packet filtering, intrusion detection systems, access control mechanisms and related subjects.

• Cryptographic techniques
 Classical cryptography, symmetric-key encryption, public key cryptography, digital signature, message authentication, cryptographic hash functions and some concrete algorithms such as DES, AES, RSA, ECC (Elliptic Curve Cryptosystems), SHA-1, SHA-256, HMAC.

• Security protocols and e-commerce protocols/schemes
 Authentication protocols, password-based authentication, digital certificate, certificate authority, revocation schemes, IPSec, IKE, SET, SSL, e-cash, micropayment, blind signature

• Advanced cryptographic protocols and e-commerce systems
 Electronic voting, electronic auction, payment servers, secret-sharing schemes, fair exchange of signatures for contract signing

Reading List

Compulsory Readings

<table>
<thead>
<tr>
<th>Title</th>
</tr>
</thead>
</table>

Additional Readings

<table>
<thead>
<tr>
<th>Title</th>
</tr>
</thead>
</table>