CS4186: COMPUTER VISION AND IMAGE PROCESSING

Effective Term
Semester A 2022/23

Part I Course Overview

Course Title
Computer Vision and Image Processing

Subject Code
CS - Computer Science

Course Number
4186

Academic Unit
Computer Science (CS)

College/School
College of Engineering (EG)

Course Duration
One Semester

Credit Units
3

Level
B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction
English

Medium of Assessment
English

Prerequisites
CS2303 Data Structures for Media or
CS2334 Data Structures for Data Science
CS3334 Data Structures or
CS4335 Design and Analysis of Algorithms or
EE2331 Data Structures and Algorithms

Precursors
Nil

Equivalent Courses
Nil

Exclusive Courses
Nil
Part II Course Details

Abstract
The elective course introduces a thorough grounding of the principles of computer vision and image processing, and seeks to develop students’ knowledge from basic image processing techniques to advanced computer vision and image analysis systems. It concentrates on the fundamental theory of computer vision and image processing with emphasis on the areas of feature extraction, image segmentation, object recognition, motion analysis and scene understanding.

Course Intended Learning Outcomes (CILOs)

<table>
<thead>
<tr>
<th>CILOs</th>
<th>Weighting (if app.)</th>
<th>DEC-A1</th>
<th>DEC-A2</th>
<th>DEC-A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Explain the main characteristics of different computer vision and image processing techniques through observation of their operations.</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2 Implement different computer vision and image processing solutions.</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3 Perform critical assessment of the effectiveness of different computer vision and image processing approaches.</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>4 Apply and combine suitable computer vision and image processing principles to create new and improved solutions for real-world applications.</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

A1: Attitude
Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability
Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments
Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

<table>
<thead>
<tr>
<th>TLAs</th>
<th>Brief Description</th>
<th>CILO No.</th>
<th>Hours/week (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Lecture</td>
<td>The lecture will focus on the introduction of computer vision and image processing techniques, and related real-world applications such as object recognition, motion analysis and scene understanding.</td>
<td>1, 3, 4</td>
<td>3 hours/week</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>Tutorial</td>
<td>Students will work on a different problem set each week during the tutorial sessions, through which they can discover the main characteristics of different computer vision and image processing techniques. They will also be invited to present their solutions, and the class will be encouraged to provide comments.</td>
<td>1, 3</td>
</tr>
<tr>
<td>3</td>
<td>Assignment</td>
<td>The students will implement selected computer vision and image processing approaches, apply these approaches to real images/videos, and interpret the results. In this way, students can observe the characteristics and perform critical assessment of these different approaches.</td>
<td>2, 3</td>
</tr>
<tr>
<td>4</td>
<td>Project</td>
<td>The students will apply the principles they have learnt from the course in real-world application scenarios.</td>
<td>2, 4</td>
</tr>
<tr>
<td>5</td>
<td>Final Exam</td>
<td>Final exam will include questions to assess the capability of students 1) to identify the important features of different computer vision and image processing techniques; 2) to perform critical evaluation of different computer vision and image processing approaches; 3) to assess the capability of students to identify the important features of different computer vision and image processing techniques.</td>
<td>1, 3, 4</td>
</tr>
</tbody>
</table>
Assessment Tasks / Activities (ATs)

<table>
<thead>
<tr>
<th>ATs</th>
<th>CILO No.</th>
<th>Weighting (%)</th>
<th>Remarks (e.g. Parameter for GenAI use)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Assignments</td>
<td>2, 3</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>Project</td>
<td>4</td>
<td>20</td>
</tr>
</tbody>
</table>

Continuous Assessment (%)
50

Examination (%)
50

Examination Duration (Hours)
2

Additional Information for ATs
For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Rubrics (AR)

Assessment Task
Assignment

Criterion
The ability to implement and assess the effectiveness of different algorithms and techniques.

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal level

Assessment Task
Project

Criterion
The ability and creativity in applying appropriate algorithms and techniques for real-world applications.

Excellent (A+, A, A-)
High
Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal level

Assessment Task
Examination

Criterion
The extent to which the students can understand the algorithms and techniques, apply them appropriately for different applications, and evaluate their performances.

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal level

Part III Other Information

Keyword Syllabus
Digital image fundamentals; feature extraction; image segmentation; object recognition; motion analysis; scene understanding.

Reading List

Compulsory Readings

<table>
<thead>
<tr>
<th>Title</th>
</tr>
</thead>
</table>
Additional Readings

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Nil</td>
</tr>
</tbody>
</table>