Part I Course Overview

Course Title
Introduction to Computational Probability Modeling

Subject Code
CS - Computer Science

Course Number
2402

Academic Unit
Computer Science (CS)

College/School
College of Engineering (EG)

Course Duration
One Semester

Credit Units
3

Level
B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction
English

Medium of Assessment
English

Prerequisites
CS1102 Introduction to Computer Studies or
CS1103B Media Computing or
CS1302 Introduction to Computer Programming

Precursors
Nil

Equivalent Courses
GE2326 Probability in Action: From the Unfinished Game to the Modern World

Exclusive Courses
Nil
Part II Course Details

Abstract
Due to the inherent uncertainty in the world, probability and statistics are used in many areas of computer science, such as data science, artificial intelligence, bioinformatics, networking, algorithms, and software testing. In this course, students will learn concepts for computational modeling of random phenomenon, probability, and statistical inference. Students will write computer programs to simulate random phenomenon and analyze real-world data with computational probability models.

Course Intended Learning Outcomes (CILOs)

<table>
<thead>
<tr>
<th>CILOs</th>
<th>Weighting (if app.)</th>
<th>DEC-A1</th>
<th>DEC-A2</th>
<th>DEC-A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Understand and explain how computational probability models are used in computer science, information technology, and data science.</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Develop critical thinking skills to use computational probability models to explain random phenomenon through independent investigation.</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Write computer programs to simulate random phenomenon, and analyze data with computational probability models.</td>
<td></td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

A1: Attitude
Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability
Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments
Demonstrate accomplishment of discovery/innovation/creativity through producing/constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

<table>
<thead>
<tr>
<th>TLAs</th>
<th>Brief Description</th>
<th>CILO No.</th>
<th>Hours/week (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Lecture</td>
<td>1</td>
<td>3 hours/week</td>
</tr>
</tbody>
</table>
2 Tutorial
In the tutorials, students will work on toy examples and mathematical problems to gain better understanding of the probability concepts introduced in lecture.

3 Assignments
Students will work on more advanced mathematical problems so that they can have a deeper understanding of various probability concepts. Meanwhile, students will investigate a small case-study of a random phenomenon in computer science, write computer programs to simulate and analyze the phenomenon, and relate it to the concepts learned in class.

Assessment Tasks / Activities (ATs)

<table>
<thead>
<tr>
<th>ATs</th>
<th>CILO No.</th>
<th>Weighting (%)</th>
<th>Remarks (e.g. Parameter for GenAI use)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class participation</td>
<td>1, 2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Assignments</td>
<td>2, 3</td>
<td>20</td>
<td>3 individual assignments</td>
</tr>
<tr>
<td>Midterm</td>
<td>1, 2</td>
<td>20</td>
<td>1 midterm</td>
</tr>
</tbody>
</table>

Continuous Assessment (%)
50

Examination (%)
50

Examination Duration (Hours)
2

Additional Information for ATs
For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Rubrics (AR)

Assessment Task
Class participation

Criterion
CAPACITY for LEARNING about computational probability models.

Excellent (A+, A, A-)
High
Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels

Assessment Task
Class participation

Criterion
CAPACITY for LEARNING how computational probability models are used in computer science.

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels

Assessment Task
Assignments

Criterion
ABILITY to EXPLAIN computational probability models are used in computer science.

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic
Assessment Task
Assignments

Criterion
ABILITY to SIMULATE random phenomenon, CONDUCT an experiment, DEVISE computer programs, and INTERPRET and ANALYZE experiment results.

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels

Assessment Task
Midterm

Criterion
ABILITY to EXPLAIN computational probability models, and how they are used in computer science.

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels
Criterion
ABILITY to SIMULATE random phenomenon, CONDUCT an experiment, DEVISE computer programs, and INTERPRET and ANALYZE experiment results.

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels

Part III Other Information
Keyword Syllabus
• Introduction to Python
 • variables, data types, operators
 • conditional statements, loops
 • functions, classes
 • scientific computing packages: Jupyter, scipy, numpy, matplotlib
• Simulating random phenomenon
 • Frequentist probability, laws of probability
 • Games of chance, expected gain, expected utility
 • Failure rates and redundancy, birthday problem
 • Arrival time, Brownian motion
• Measuring random phenomenon
 • Estimating parameters, confidence intervals
 • Hypothesis testing
• Inference with Bayes Rule
 • Conditional probability, Bayes’ rule
 • Text analysis with Naïve Bayes classifiers
 • Decision making with subjective probability and optimal Bayes search
 • Prediction with logistic regression
 • Time-series modeling with Markov models

Reading List
Compulsory Readings

<table>
<thead>
<tr>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Introduction to Scientific Computing in Python. Robert Johansson [online]</td>
</tr>
</tbody>
</table>
Additional Readings

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Publisher</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Additional reading material will be provided as needed.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>