CS2315: COMPUTER PROGRAMMING

Effective Term
Semester A 2023/24

Part I Course Overview

Course Title
Computer Programming

Subject Code
CS - Computer Science

Course Number
2315

Academic Unit
Computer Science (CS)

College/School
College of Engineering (EG)

Course Duration
One Semester

Credit Units
3

Level
B1, B2, B3, B4 - Bachelor's Degree

Medium of Instruction
English

Medium of Assessment
English

Prerequisites
Nil

Precursors
Nil

Equivalent Courses
CS1315 Introduction to Computer Programming
CS2310 Computer Programming
CS2311 Computer Programming

Exclusive Courses
CS2313 Computer Programming
CS2360 Java Programming
Part II Course Details

Abstract
This course aims to equip the students with key concepts and techniques of programming using a high-level object-oriented programming language and to develop practical skills in producing quality programs. No prior programming or computer science experience is required.

Course Intended Learning Outcomes (CILOs)

<table>
<thead>
<tr>
<th>CILOs</th>
<th>Weighting (if app.)</th>
<th>DEC-A1</th>
<th>DEC-A2</th>
<th>DEC-A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Explain the structure of an object-oriented computer program.</td>
<td>10</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2 Analyze, test and debug computer programs.</td>
<td>15</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3 Solve a task by applying effective programming techniques, which involve algorithm and data structures.</td>
<td>60</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4 Design and construct well-structured programs with good programming practices.</td>
<td>15</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

A1: Attitude
Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability
Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to real-life problems.

A3: Accomplishments
Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

Teaching and Learning Activities (TLAs)

<table>
<thead>
<tr>
<th>TLAs</th>
<th>Brief Description</th>
<th>CILO No.</th>
<th>Hours/week (if applicable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Lecture</td>
<td>Various programming concepts and techniques will be introduced, explained and demonstrated with examples.</td>
<td>1, 2, 3, 4</td>
<td>3 hours per week</td>
</tr>
</tbody>
</table>
The laboratory sessions are designed to enable the students to put theory into practice and be proficient in a programming language. The laboratory exercises consist of programming tasks and students can try out their programs using a common integrated development environment. Feedback will be given to students on their work.

The assignments are more comprehensive tasks compared with laboratory exercises. The students need to consider the given requirements and design programming solutions by applying and combining various techniques learnt from lectures and laboratory exercises. Students are required to implement their solutions as practical computer programs, and to explain their ideas/algorithms using suitable presentation methods (e.g. a report, flowchart, etc.).

<table>
<thead>
<tr>
<th>ATs</th>
<th>CILO No.</th>
<th>Weighting (%)</th>
<th>Remarks (e.g. Parameter for GenAI use)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quiz</td>
<td>1, 3, 4</td>
<td>20</td>
<td>Correctly explain the structure of an object-oriented computer program</td>
</tr>
<tr>
<td>Assignment</td>
<td>2, 3, 4</td>
<td>20</td>
<td>Select proper test cases to assess the correctness of a program. Students are required to work on assignments at least once every four weeks</td>
</tr>
</tbody>
</table>

Continuous Assessment (%)

40
Examination (%)
60

Examination Duration (Hours)
2

Additional Information for ATs
For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Rubrics (AR)

Assessment Task
Quiz

Criterion
ABILITY to explain, analyse and debug the structure of a computer program

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels

Assessment Task
Assignment

Criterion
CAPACITY for applying programming techniques

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels
Assessment Task
Examination

Criterion
CAPACITY for analyzing and writing effective computer programs

Excellent (A+, A, A-)
High

Good (B+, B, B-)
Significant

Fair (C+, C, C-)
Moderate

Marginal (D)
Basic

Failure (F)
Not even reaching marginal levels

Part III Other Information

Keyword Syllabus
Program design, development of algorithms, programming language, control structures, data types, arrays, file I-O, recursion, and data structures, object-based programming: data abstraction, classes, and the class library; programming style, program testing.

Syllabus:
• Computers and programming
 Hardware/software hierarchy; the computer as a multi-level language machine. The software development process. Program development environments.
• Programming techniques and the development of algorithms
 Algorithms, programming language, modular decomposition and procedural abstraction, automatic and dynamic variables, parameter-passing by reference and by value for atomic data, objects, and arrays, control structures, iteration.
• Data structures
• Program development practice
 Professional programming styles. Program testing. Program documentation.

Reading List

Compulsory Readings

<table>
<thead>
<tr>
<th>Title</th>
</tr>
</thead>
</table>
Additional Readings

<table>
<thead>
<tr>
<th>Title</th>
</tr>
</thead>
</table>