City University of Hong Kong Course Syllabus

offered by College/School/Department of $_$ Mathematics with effect from Semester $_$ A $_$ 20 $_$ 20 $_$ / $_$ 21 $_$

Part I Course Over	view						
Course Title:	Analysis						
Course Code:	MA3526						
Course Duration:	One semester						
Credit Units:	3						
Level:	В3						
Proposed Area: (for GE courses only)	☐ Arts and Humanities ☐ Study of Societies, Social and Business Organisations ☐ Science and Technology						
Medium of Instruction:	English						
Medium of Assessment:	English						
Prerequisites: (Course Code and Title)	MA2508 Multi-variable Calculus						
Precursors: (Course Code and Title)	Nil						
Equivalent Courses : (Course Code and Title)	Nil						
Exclusive Courses: (Course Code and Title)	MA3524 Analysis						

1

Part II **Course Details**

1. **Abstract**

(A 150-word description about the course)

This course gives rigorous analysis on the real line and higher dimensional Euclidean spaces. It trains students to prove mathematical theorems rigorously.

2. **Course Intended Learning Outcomes (CILOs)**

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs#	Weighting*		ery-eni	
		(if	curricu	ılum rel	lated
		applicable)	learnin	g outco	omes
			(please	e tick	where
			approp	riate)	
			A1	A2	A3
1.	explain rigorously concepts of limit and continuity.	40%	*	*	*
2.	recognize basic properties of metric space.	20%	*	*	
3.	understand the concepts of uniform continuity and uniform	30%	*	*	*
	convergence.				
4.	the combination of CILOs 1-3.	10%	*	*	*
* If we	eighting is assigned to CILOs, they should add up to 100%.	100%			

^{*} If weighting is assigned to CILOs, they should add up to 100%.

A1:

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. **Teaching and Learning Activities (TLAs)**

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description		O No.		Hours/week (if		
		1	2	3	4		applicable)
Lecture	Learning through teaching is	Y	Y	Y	Y		39 hours in
	primarily based on lectures.						total
Take-home	Learning through take-home	Y	Y	Y	Y		after-class
assignments	assignments helps students						
	understand basic concepts and						
	techniques of analysis.						
Math Help	Learning activities in Math Help	Y	Y	Y	Y		C 1
Centre	Centre provides students extra						after-class

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

help.				

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

30% Coursework

70% Examination (Duration: 2 hours, at the end of the semester)

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment Tasks/Activities CILO No.					Weighting*	Remarks	
		2	3	4			
Continuous Assessment:%			1		 		
Quiz	Y	Y				5%	Questions are designed for the first part of the course to see how well students have learned concepts about limit.
Test	Y	Y	Y			15%	Questions are designed for the second part of the course to see how well students have learned concepts about continuity and sets.
Hand-in assignments	Y	Y	Y	Y		5%	These are skills based assessment to help students understand basic concepts and techniques of analysis.
Formative take-home assignments	Y	Y	Y	Y		5%	The assignments provide students chances to demonstrate their achievements on analysis learned in this course.
Examination (duration: 2 hrs)	Y	Y	Y	Y		70%	Examination questions are designed to see how far students have achieved their intended learning outcomes. Questions will primarily be skills and understanding based to

								assess the student's versatility in analysis.
* The weightings should add up to 100%.					100%			

st The weightings should add up to 100%.

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
		(A+, A, A-)	(B+, B, B-)	(C+, C, C-)	(D)	(F)
1. Test	ABILITY to APPLY	High	Significant	Moderate	Basic	Not even reaching
	and EXPLAIN the	0				C
	basic concepts and					marginal levels
	methodology of					
	analysis					
2. Hand-in	CAPACITY for	High	Significant	Moderate	Basic	Not even reaching
assignments	LEARNING to	6				C
	understand the					marginal levels
	principles of analysis					
4. Examination	ABILITY to	High	Significant	Moderate	Basic	Not even reaching
	DERIVE	111811	Zigiiii wiii	1,10001000	24316	C
	mathematical proofs					marginal levels
	in analysis					
5. Formative	CAPACITY for	High	Significant	Moderate	Basic	Not even reaching
take-home	LEARNING to	6	~-6			C
assignments	understand the					marginal levels
	principles of analysis					

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

Limit, continuity, least upper bound axiom, open and closed sets, compactness, connectedness, differentiation, uniform convergence and generalization to higher dimensions.

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	"Understanding Analysis" by Stephen Abbott, 2010.
2.	
3.	
•••	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	
2.	
3.	