City University of Hong Kong Course Syllabus

offered by College/School/Department of <u>Mathematics</u> with effect from Semester <u>A</u> 20<u>18</u> / <u>19</u>

Part I Course Overview

	Enhanced Calculus and Linear Algebra II
Course Title:	MA1301
Course Code:	
Course Duration:	1 semester
Credit Units:	3 CUs
Level:	B1
Proposed Area: (for GE courses only)	Arts and Humanities Study of Societies, Social and Business Organisations Science and Technology
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites : (Course Code and Title)	 (i) MA1300 Enhanced Calculus and Linear Algebra I, or (ii) Grade B or above in MA1200 Calculus and Basic Linear Algebra I (approval from MA must be obtained)
Precursors : (Course Code and Title)	Nil
Equivalent Courses : <i>(Course Code and Title)</i>	MA1201 Calculus and Basic Linear Algebra II
	MA1006 Calculus and Linear Algebra for Business
	MA1101 Foundation Mathematics II,
	MA1001 Higher Mathematics I(A)
	MA1002 Higher Mathematics I(B)
Exclusive Courses:	MA1003 Higher Mathematics II(A)
(Course Code and Title)	MA1004 Higher Mathematics II(B)

Part II **Course Details**

1. Abstract

(A 150-word description about the course)

This is the second of two required courses designed for students pursuing studies in

mathematics, or engineering/science students requiring solid background in mathematics. It aims to

- develop fluency in concepts and techniques from integral calculus, linear algebra and • complex numbers,
- introduce elementary theory of differential and integral calculus, and •
- foster skills in implementing methods of calculus and linear algebra to mathematical and • physical applications.

2. **Course Intended Learning Outcomes (CILOs)**

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of *performance.*)

No.	CILOs#	Weighting* (if applicable)	curricu learnir	very-en ilum rei ng outco e tick priate)	lated omes
			A1	A2	A3
1.	explain elementary theory of differential and integral calculus.	15%	√		
2.	perform techniques of integration to evaluate integrals of functions.	30%		 ✓ 	
3.	explain at high level concepts from vector and matrix algebra.	10%	\checkmark		
4.	manipulate expressions and solve geometric problems with vector arithmetic.	10%		~	
5.	implement techniques of matrix arithmetic and of solving linear systems.	15%		 ✓ 	
6.	perform operations and solve equations involving complex numbers.	10%		~	
7.	develop mathematical models through calculus and linear algebra, and appropriately apply to problems in science and engineering.	10%	V	V	V
* If w	eighting is assigned to CILOs, they should add up to 100%.	100%			

[#] Please specify the alignment of CILOs to the Gateway Education Programme Intended Learning outcomes (PILOs) in Section A of Annex.

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description		.0 No).		Hours/week (if			
	-	1	2	3	4	5	6	7	applicable)
Lectures	Learning through	V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	39 hours in total
	teaching is primarily								(A);
	based on lectures.								46 hours in total (B)
Tutorials		\checkmark							3 hours in total (A);
									4 hours in total (B)
			\checkmark						2 hours in total (A);
	Learning through								3 hours in total (B)
	Learning through			\checkmark	\checkmark				2 hours in total (A);
	tutorials is primarily								3 hours in total (B)
	based on interactive			\checkmark		\checkmark			2 hours in total (A);
	problem solving allowing								3 hours in total (B)
	instant feedback.						\checkmark		2 hours in total (A);
									3 hours in total (B)
								\checkmark	2 hours in total (A);
									3 hours in total (B)
Take-home	Learning through	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	
assignment s	take-home assignments								
5	helps students implement								
	theory of calculus,								
	methods of integral								C 1
	calculus, linear algebra								after class
	and complex numbers, as								
	well as apply knowledge								
	of which to mathematical								
	and physical problems.								
Online	Learning through online							\checkmark	
applications	examples for								
	applications helps								
	students apply methods of								
	calculus, linear algebra								after class
	and complex numbers to								
	problems in science and								
	engineering.								
Math Help	Learning activities in	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	after-class,

Centre	Math Help Centre				depending on need
	provides students extra				
	assistance in study.				

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

30% Coursework

70% Examination (Duration: 3 hours, at the end of the semester)

For a student to pass the course, at least 30% of the maximum mark for the examination must be obtained.

Assessment	CII	LON	No.					Weighting*	Remarks
Tasks/Activities	1	2	3	4	5	6	7		
Continuous Assessment: _30	9	%	1	1	1			1	
Quizzes/Test(s)			✓	✓	✓	\checkmark	×	15 - 30%	Questions are designed to see how well students have learned theory of calculus, techniques of integral calculus, as well as concepts and methods of linear algebra and complex numbers. These assessment tasks monitor students' progress
Hand-in assignment(s)	✓	✓	~	✓	✓	V	✓	0 - 15%	and reveal gaps in knowledge.These are skills based assessment to see whether students are familiar with elementary theory of calculus as well as essential methods and applications of

										integral calculus, linear algebra and complex numbers.
Examination: _70% (durat			rs, if	app	licab	lle)				Examination questions are designed to see how far students have achieved their intended learning outcomes. Questions will primarily be skills based to assess the extent to which students have mastered methods of the course and synthesized mathematical knowledge in practical applications.
* The weightings should add up t	to 10	0%.						100)%]

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Assessment Task	Criterion	Excellent (A+, A, A-)	Good (B+, B, B-)	Fair (C+, C, C-)	Marginal (D)	Failure (F)
1. Quizzes/Test(s)	ABILITY to APPLY and EXPLAIN the methodology of integral calculus and linear algebra	High	Significant	Moderate	Basic	Not even reaching marginal levels
2. Hand-in assignment(s)		High	Significant	Moderate	Basic	Not even reaching marginal levels
3. Examination	ABILITY to DEVELOP mathematical models through calculus and linear algebra and SOLVE problems with different methods	- ingit	Significant	Moderate	Basic	Not even reaching marginal levels
•••						

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

(An indication of the key topics of the course.)

- A) Basic theorems of differentiation
- B) Applications of differentiation: rate of change, local extrema, optimization problems, power and Taylor series, l'Hôpital rule
- C) Definite and indefinite integrals; Techniques of integration, integration by substitution, integration by parts; Improper integrals
- D) Physical and geometric applications of integration
- E) Vectors in R^2 and R^3 ; Scalar products, cross products, triple scalar products; Linear (in)dependence; Applications to equations of lines and planes
- F) Matrices; Determinants, cofactor expansion; Systems of linear equations, Gaussian elimination, Cramer's rule; Matrix inverses, Gauss-Jordan elimination method
- G) Arithmetic of complex numbers; Polar and Euler forms; De Moivre's theorem and its applications

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

1.	Basic Calculus and Linear Algebra (Compiled by Department of Mathematics, City	
	University of Hong Kong), Pearson Custom Publishing, 2007	
2.	C. Henry Edwards and David E. Penney, Calculus: Early Transcendentals, 7th ed.,	
	Pearson Prentice Hall, 2008	
3.	Robert A. Adams, Calculus: A Complete Course, 6th ed., Pearson Addison Wesley,	
	2006	

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

1.	Glyn James et al., <i>Modern engineering mathematics</i> , Harlow : Pearson Prentice Hall, 2008.
2.	
3.	