A Theory of Gabor Multipliers

HANS G. FEICHTINGER

Department of Mathematics
University of Vienna, Austria
E-mail: hans.georg.feichtinger@univie.ac.at

Gabor theory may be understood as the branch of time-frequency analysis which is based on the use of Weyl-Heisenberg families, obtained from a given Gabor atom \(g \) by means of TF-shifts along some lattice \(\Lambda \), \(g_\lambda = \pi(\lambda)g \). Let us assume that \(g \) is a tight Gabor atom with respect to some given TF-lattice \(\Lambda \), i.e. that any \(f \in L^2(\mathbb{R}^d) \) has an \(L^2 \) convergent representation

\[
f = \sum_{\lambda \in \Lambda} \langle f, g_\lambda \rangle g_\lambda,
\]

with \(l^2 \)-coefficients. An operator is called Gabor multiplier if it is of the form

\[
T_m f = \sum_{\lambda \in \Lambda} m(\lambda) \langle f, g_\lambda \rangle g_\lambda,
\]

and \((m(\lambda))_{\lambda \in \Lambda} \) is called its upper symbol. The theory of Gabor multipliers is concerned with the questions such as:

- What are the properties of \(T_m \), given \(g, \Lambda \) and \(m \)? When does one obtain a Hilbert Schmidt operator (for example)?

- On which Banach spaces (besides \(L^2 \)) are Gabor multipliers bounded, or establish isomorphism between different such spaces?

- Which operators can be well approximated by Gabor multipliers (and how)? What about an (approximate) symbolic calculus?

- What are the properties of the mapping from the upper symbol \(m \) to the operator \(T_m \), for fixed \((g, \Lambda) \) and what is dependence on \(g \) resp. \(\Lambda \)?