On the Recovery of a Surface with Prescribed First and Second Fundamental Forms

PHILIPPE G. CIARLET

Department of Mathematics, City University of Hong Kong and
Laboratoire d’Analyse Numérique, Université Pierre et Marie Curie, France
E-mail: mcpgc@cityu.edu.hk

The fundamental theorem of surface theory asserts that, if a field of positive definite symmetric matrices of order two and a field of symmetric matrices of order two together satisfy the Gauss and Codazzi-Mainardi equations in a connected and simply connected open subset of \mathbb{R}^2, then there exists a surface in \mathbb{R}^3 with these fields as its first and second fundamental forms (global existence theorem) and this surface is unique up to isometries in \mathbb{R}^3 (rigidity theorem).

The aim of this lecture, which is based on a recent joint work with François Larsson, is to provide a self-contained and essentially elementary proof of this theorem by showing how it can be established as a simple corollary of another well-known theorem of differential geometry, which asserts that, if the Riemann-Christoffel tensor associated with a field of positive definite symmetric matrices of order three vanishes in a connected and simply connected open subset of \mathbb{R}^3, then this field is the metric tensor field of an open set that can be isometrically imbedded in \mathbb{R}^3 (global existence theorem) and this open set is unique up to isometries in \mathbb{R}^3 (rigidity theorem).