Non-symmetric Positive Solutions for Symmetric Dirichlet Elliptic Problems

DAOMIN CAO
Institute of Applied Mathematics, Academy of Math & System Sciences
The Chinese Academy of Sciences, P. R. China
E-mail: cao@amath6.amt.ac.cn

In this talk the speaker will present some results on the existence of non-radially symmetric positive solutions of the following radially symmetric problems when \(\varepsilon \) is small positive number:

\[
\begin{align*}
-\Delta u &= |x|^\tau u^{\frac{N+\varepsilon}{N-\varepsilon}} & x \in \Omega, \\
u &> 0 & x \in \Omega, \\
u &= 0 & x \in \partial\Omega,
\end{align*}
\]

where \(N \geq 3, \Omega \) be the unit ball in \(\mathbb{R}^N \) centered at the origin and \(\tau > 0 \) be a given number.

and

\[
\begin{align*}
-\Delta u + (\frac{1}{q} - h(x))u &= (1 - f(x))u^{p} & \text{in} \ \mathbb{R}^N, \\
u &> 0 & \text{in} \ \mathbb{R}^N, \\
u &\in H^1(\mathbb{R}^N),
\end{align*}
\]

where \(h(x) \) and \(f(x) \) are nonnegative radially symmetric functions in \(L^\infty(\mathbb{R}^N) \), \(h(x) \) and \(f(x) \) have compact support in \(\mathbb{R}^N \), \(f(x) \leq 1 \) for all \(x \in \mathbb{R}^N \), \(1 < p < +\infty \) for \(N = 1, 2, 1 < p < \frac{N+2}{N-2} \).