A survey of chaotic dynamics (I):
Uniformly Hyperbolic dynamics

Jean-Christophe Yoccoz
Collège de France and City University of Hong Kong
Hong Kong, October 20, 2011
Definition: A linear automorphism T of a finite-dimensional vector space is *hyperbolic* if no (complex) eigenvalue of T has modulus 1.

Proposition: A linear automorphism T of a Banach space E is hyperbolic if there exists a continuous splitting $E = E^s \oplus E^u$ into T-invariant closed subspaces and constants $C > 0, 0 < \lambda < 1$ such that, for all $n \geq 0$, $||T^n|_{E^s}|| \leq C \lambda^n, ||T^n|_{E^u}|| \leq C \lambda^n$.

Remark: One can find an equivalent norm such that these estimates hold with $C = 1$.
Hyperbolic linear maps

Definition: A linear automorphism T of a finite-dimensional vector space is *hyperbolic* if no (complex) eigenvalue of T has modulus 1.

More generally, a linear automorphism T of a Banach space is hyperbolic if its *spectrum* is disjoint from the unit circle.

Proposition: A linear automorphism T of a Banach space E is hyperbolic iff there exists a continuous splitting $E = E_s \oplus E_u$ into T-invariant closed subspaces and constants $C > 0, 0 < \lambda < 1$ such that, for all $n \geq 0$, $\|T^n E_s\| \leq C \lambda^n$, $\|T^{-n} E_u\| \leq C \lambda^n$.

Remark: One can find an equivalent norm such that these estimates hold with $C = 1$.

Jean-Christophe Yoccoz
A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Hyperbolic linear maps

Definition: A linear automorphism T of a finite-dimensional vector space is *hyperbolic* if no (complex) eigenvalue of T has modulus 1.

More generally, a linear automorphism T of a Banach space is hyperbolic if its *spectrum* is disjoint from the unit circle.

For a linear automorphism of a Banach space, to be hyperbolic is an **open** property.
Definition: A linear automorphism T of a finite-dimensional vector space is \textit{hyperbolic} if no (complex) eigenvalue of T has modulus 1.

More generally, a linear automorphism T of a Banach space is hyperbolic if its \textit{spectrum} is disjoint from the unit circle.

For a linear automorphism of a Banach space, to be hyperbolic is an \textbf{open} property.

Proposition: A linear automorphism T of a Banach space E is hyperbolic iff there exists a continuous splitting $E = E_s \oplus E_u$ into T-invariant closed subspaces and constants $C > 0$, $0 < \lambda < 1$ such that, for all $n \geq 0$,

$$||T^n_{|E_s}|| \leq C\lambda^n, \quad ||T_{|E_u}^{-n}|| \leq C\lambda^n.$$
Hyperbolic linear maps

Definition: A linear automorphism T of a finite-dimensional vector space is *hyperbolic* if no (complex) eigenvalue of T has modulus 1.

More generally, a linear automorphism T of a Banach space is hyperbolic if its *spectrum* is disjoint from the unit circle.

For a linear automorphism of a Banach space, to be hyperbolic is an **open** property.

Proposition: A linear automorphism T of a Banach space E is hyperbolic iff there exists a continuous splitting $E = E_s \oplus E_u$ into T-invariant closed subspaces and constants $C > 0$, $0 < \lambda < 1$ such that, for all $n \geq 0$,

$$
\| T^n_{|E_s} \| \leq C \lambda^n, \quad \| T^{-n}_{|E_u} \| \leq C \lambda^n.
$$

Remark: One can find an equivalent norm such that these estimates hold with $C = 1$.

Jean-Christophe Yoccoz
A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Hyperbolic fixed points

Let E be a Banach space, U an open subset, $f : U \to E$ be a C^1 map.

Definition: A fixed point x^* of f is hyperbolic if the tangent map $T_{x^*}f$ is a hyperbolic linear automorphism of E.

Theorem: (Hartman-Grobman) Let T be a linear hyperbolic automorphism of E. There exists $\epsilon > 0$ such that, if $\Delta f : E \to E$ is a Lipschitz bounded map with $\text{Lip}(\Delta f) < \epsilon$, then there exists a unique homeomorphism $h : E \to E$ such that $h - \text{id}$ is bounded and $h \circ T \circ h^{-1} = T + \Delta f$.

Corollary: The dynamics in a neighborhood of a hyperbolic fixed point are topologically conjugated to those of its tangent map.
Let E be a Banach space, U an open subset, $f : U \to E$ be a C^1 map.

Definition: A fixed point x^* of f is *hyperbolic* if the tangent map $T_{x^*}f$ is a hyperbolic linear automorphism of E.

Theorem: (Hartman-Grobman) Let T be a linear hyperbolic automorphism of E. There exists $\varepsilon > 0$ such that, if $\Delta f : E \to E$ is a Lipschitz bounded map with $\text{Lip}(\Delta f) < \varepsilon$, then there exists a unique homeomorphism $h : E \to E$ such that $h - \text{id}$ is bounded and $h \circ T \circ h^{-1} = T + \Delta f$.

Corollary: The dynamics in a neighborhood of a hyperbolic fixed point are topologically conjugated to those of its tangent map.
Hyperbolic fixed points

Let E be a Banach space, U an open subset, $f : U \to E$ be a C^1 map.

Definition: A fixed point x^* of f is *hyperbolic* if the tangent map $T_{x^*}f$ is a hyperbolic linear automorphism of E.

Theorem: (Hartman-Grobman) Let T be a linear hyperbolic automorphism of E. There exists $\epsilon > 0$ such that, if $\Delta f : E \to E$ is a Lipschitz bounded map with $\text{Lip}(\Delta f) < \epsilon$, then there exists a unique homeomorphism $h : E \to E$ such that $h - \text{id}$ is bounded and

$$h \circ T \circ h^{-1} = T + \Delta f.$$
Let E be a Banach space, U an open subset, $f : U \to E$ be a C^1 map.

Definition: A fixed point x^* of f is *hyperbolic* if the tangent map $T_{x^*}f$ is a hyperbolic linear automorphism of E.

Theorem: (Hartman-Grobman) Let T be a linear hyperbolic automorphism of E. There exists $\varepsilon > 0$ such that, if $\Delta f : E \to E$ is a Lipschitz bounded map with $\text{Lip}(\Delta f) < \varepsilon$, then there exists a unique homeomorphism $h : E \to E$ such that $h - \text{id}$ is bounded and

$$h \circ T \circ h^{-1} = T + \Delta f.$$

Corollary: The dynamics in a neighborhood of a hyperbolic fixed point are topologically conjugated to those of its tangent map.
Sternberg’s linearization theorem

Theorem: (Sternberg) Assume that E is finite-dimensional, that x^* is a hyperbolic fixed point of f, that $T_{x^*}f$ is semi-simple (diagonalizable over \mathbb{C}) and there are no *resonances* between the (complex) eigenvalues of $T_{x^*}f$. Then, f is C^∞-linearizable: there is a local C^∞-diffeomorphism $h : (E, x^*) \rightarrow (E, 0)$ such that

$$h \circ f \circ h^{-1} = T_{x^*}f.$$
Theorem: (Sternberg) Assume that E is finite-dimensional, that x^* is a hyperbolic fixed point of f, that $T_{x^*}f$ is semi-simple (diagonalizable over \mathbb{C}) and there are no resonances between the (complex) eigenvalues of $T_{x^*}f$. Then, f is C^∞-linearizable: there is a local C^∞-diffeomorphism $h : (E, x^*) \to (E, 0)$ such that

$$h \circ f \circ h^{-1} = T_{x^*}f.$$

A resonance is a relation

$$\lambda_i = \lambda_1^{j_1} \cdots \lambda_n^{j_n}, \quad 1 \leq i \leq n, \quad j_m \geq 0, \quad \sum_{1}^{n} j_m \geq 2,$$

between the eigenvalues of $T_{x^*}f$.

A resonance is a relation between the eigenvalues of $T_{x^*}f$.

Jean-Christophe Yoccoz
A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Theorem: (Sternberg) Assume that E is finite-dimensional, that x^* is a hyperbolic fixed point of f, that $T_{x^*}f$ is semi-simple (diagonalizable over \mathbb{C}) and there are no resonances between the (complex) eigenvalues of $T_{x^*}f$. Then, f is C^∞-linearizable: there is a local C^∞-diffeomorphism $h : (E, x^*) \to (E, 0)$ such that

$$h \circ f \circ h^{-1} = T_{x^*}f.$$

A resonance is a relation

$$\lambda_i = \lambda_1^{j_1} \cdots \lambda_n^{j_n}, \quad 1 \leq i \leq n, \quad j_m \geq 0, \quad \sum_{1}^{n} j_m \geq 2,$$

between the eigenvalues of $T_{x^*}f$.

Remark: There is no "diophantine" hypothesis, i.e no "small divisor" problem.
The stable manifold theorem

Let \(E \) be a Banach space, \(T \) be a linear automorphism of \(E \). Let \(0 < \kappa_s < \kappa_u \) be such that the spectrum of \(T \) is disjoint from the annulus \(\{ \kappa_s \leq |\lambda| \leq \kappa_u \} \), and let \(E = E_s \oplus E_u \) be the associated decomposition into \(T \)-invariant subspaces.
The stable manifold theorem

Let E be a Banach space, T be a linear automorphism of E. Let $0 < \kappa_s < \kappa_u$ be such that the spectrum of T is disjoint from the annulus $\{\kappa_s \leq |\lambda| \leq \kappa_u\}$, and let $E = E_s \oplus E_u$ be the associated decomposition into T-invariant subspaces.

Theorem: Let $\kappa \in (\kappa_s, \kappa_u)$. Let $f : E \to E$ be a Lipschitz map satisfying $f(0) = 0$ and $\text{Lip}(f - T) < \min(\kappa - \kappa_s, \kappa_u - \kappa)$. Then the set

$$W^s_{\kappa}(f) := \{x \in E, \sup_{n \to +\infty} \kappa^{-n} ||f^n(x)|| < +\infty\}$$

is the graph of a contracting map $g : E_s \to E_u$ satisfying $g(0) = 0$. For $x \in W^s_{\kappa}(f)$, one has

$$\lim_{n \to +\infty} \kappa^{-n} ||f^n(x)|| = 0.$$
Smoothness of the stable manifold

Remark: The set $W^s_\kappa(f)$ does not depend on κ, provided $\text{Lip}(f - T) < \min(\kappa - \kappa_s, \kappa_u - \kappa)$.

Terminology:
- The set $W^s_\kappa(f)$ is called a **strong stable manifold** when $\kappa_u \leq 1$,
- a **center-stable manifold** when $\kappa_s \geq 1$,
- and the **stable manifold** when $\kappa_s < 1 < \kappa_u$.

Proposition: When $\kappa < 1$ and f is C^r (r real ≥ 1, $r = \omega$), then g is C^r. Moreover, $D_0 g = 0$ if $D_0 (f - T) = 0$.

Remark: When $\text{Lip}(f - T)$ is small enough, f is a biLipschitz homeomorphism and one can apply the theorem to f^{-1}.

Jean-Christophe Yoccoz
A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Remark: The set $W^s_\kappa(f)$ does not depend on κ, provided $\text{Lip}(f - T) < \min(\kappa - \kappa_s, \kappa_u - \kappa)$.

Terminology: The set $W^s_\kappa(f)$ is called a *strong stable* manifold when $\kappa_u \leq 1$, a *center-stable* manifold when $\kappa_s \geq 1$, and the *stable* manifold when $\kappa_s < 1 < \kappa_u$.
Smoothness of the stable manifold

Remark: The set $W^s_\kappa(f)$ does not depend on κ, provided $\text{Lip}(f - T) < \min(\kappa - \kappa_s, \kappa_u - \kappa)$.

Terminology: The set $W^s_\kappa(f)$ is called a *strong stable* manifold when $\kappa_u \leq 1$, a *center-stable* manifold when $\kappa_s \geq 1$, and the *stable* manifold when $\kappa_s < 1 < \kappa_u$.

Proposition: When $\kappa < 1$ and f is C^r (r real ≥ 1, $r = \infty$, $r = \omega$), then g is C^r. Moreover, $D_0g = 0$ if $D_0(f - T) = 0$.
Remark: The set $W_{\kappa}^{s}(f)$ does not depend on κ, provided $\text{Lip}(f - T) < \min(\kappa - \kappa_s, \kappa_u - \kappa)$.

Terminology: The set $W_{\kappa}^{s}(f)$ is called a **strong stable** manifold when $\kappa_u \leq 1$, a **center-stable** manifold when $\kappa_s \geq 1$, and the **stable** manifold when $\kappa_s < 1 < \kappa_u$.

Proposition: When $\kappa < 1$ and f is C^r (r real ≥ 1, $r = \infty$, $r = \omega$), then g is C^r. Moreover, $D_0g = 0$ if $D_0(f - T) = 0$.

Remark: When $\text{Lip}(f - T)$ is small enough, f is a biLipschitz homeomorphism and one can apply the theorem to f^{-1}.
Let K be a compact metric space, f be a homeomorphism of K, $p : E \to K$ be a Banach vector bundle over K, and $F : E \to E$ be an automorphism of E over f.

Proposition: The following are equivalent

1. The automorphism $\sigma \mapsto F \circ \sigma \circ f^{-1}$ induced by F on the space of continuous sections of p is hyperbolic.

2. The automorphism $\sigma \mapsto F \circ \sigma \circ f^{-1}$ induced by F on the space of bounded sections of p is hyperbolic.

3. There exists a continuous splitting $E = E_s \oplus E_u$ into closed F-invariant subbundles and constants $C > 0$, $0 < \lambda < 1$ such that, for all $n \geq 0$,

$$||F^n||_{E_s} \leq C \lambda^n,$$

$$||F^{-n}||_{E_u} \leq C \lambda^n.$$

When these conditions are satisfied, we say that F is hyperbolic.

The splitting of the spaces of bounded/continuous sections are induced by the splitting of E.

Jean-Christophe Yoccoz
A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Hyperbolic compact invariant sets (I)

Let K be a compact metric space, f be a homeomorphism of K, $p : E \to K$ be a Banach vector bundle over K, and $F : E \to E$ be an automorphism of E over f.

Proposition: The following are equivalent

1. The automorphism $\sigma \mapsto F \circ \sigma \circ f^{-1}$ induced by F on the space of continuous sections of p is hyperbolic.
2. The automorphism $\sigma \mapsto F \circ \sigma \circ f^{-1}$ induced by F on the space of bounded sections of p is hyperbolic.
3. There exists a continuous splitting $E = E_s \oplus E_u$ into closed F-invariant subbundles and constants $C > 0, 0 < \lambda < 1$ such that, for all $n \geq 0$ $\|F^n|_{E_s}\| \leq C\lambda^n, \|F^{-n}|_{E_u}\| \leq C\lambda^n$.

When these conditions are satisfied, we say that F is hyperbolic.

The splitting of the spaces of bounded/continuous sections are induced by the splitting of E.

Jean-Christophe Yoccoz
Let K be a compact metric space, f be a homeomorphism of K, $p : E \to K$ be a Banach vector bundle over K, and $F : E \to E$ be an automorphism of E over f.

Proposition: The following are equivalent

1. The automorphism $\sigma \mapsto F \circ \sigma \circ f^{-1}$ induced by F on the space of **continuous** sections of p is hyperbolic.

When these conditions are satisfied, we say that F is hyperbolic.

The splitting of the spaces of bounded/continuous sections are induced by the splitting of E.

Jean-Christophe Yoccoz

A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Let K be a compact metric space, f be a homeomorphism of K, $p : E \to K$ be a Banach vector bundle over K, and $F : E \to E$ be an automorphism of E over f.

Proposition: The following are equivalent

1. The automorphism $\sigma \mapsto F \circ \sigma \circ f^{-1}$ induced by F on the space of continuous sections of p is hyperbolic.
2. The automorphism $\sigma \mapsto F \circ \sigma \circ f^{-1}$ induced by F on the space of bounded sections of p is hyperbolic.

3. There exists a continuous splitting $E = E_s \oplus E_u$ into closed F-invariant subbundles and constants $C > 0, 0 < \lambda < 1$ such that, for all $n \geq 0$,

$$||F^n|_{E_s}|| \leq C \lambda^n, \quad ||F^{-n}|_{E_u}|| \leq C \lambda^n.$$

When these conditions are satisfied, we say that F is hyperbolic.
Hyperbolic compact invariant sets (I)

Let K be a compact metric space, f be a homeomorphism of K, $p : E \to K$ be a Banach vector bundle over K, and $F : E \to E$ be an automorphism of E over f.

Proposition: The following are equivalent

1. The automorphism $\sigma \mapsto F \circ \sigma \circ f^{-1}$ induced by F on the space of **continuous** sections of p is hyperbolic.
2. The automorphism $\sigma \mapsto F \circ \sigma \circ f^{-1}$ induced by F on the space of **bounded** sections of p is hyperbolic.
3. There exists a continuous splitting $E = E_s \oplus E_u$ into closed F-invariant subbundles and constants $C > 0$, $0 < \lambda < 1$ such that, for all $n \geq 0$

$$
\| F^n_{|E_s} \| \leq C \lambda^n, \quad \| F^{-n}_{|E_u} \| \leq C \lambda^n.
$$

When these conditions are satisfied, we say that F is hyperbolic.

The splitting of the spaces of bounded/continuous sections are induced by the splitting of E.

Jean-Christophe Yoccoz

A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Let K be a compact metric space, f be a homeomorphism of K, $p : E \to K$ be a Banach vector bundle over K, and $F : E \to E$ be an automorphism of E over f.

Proposition: The following are equivalent

1. The automorphism $\sigma \mapsto F \circ \sigma \circ f^{-1}$ induced by F on the space of **continuous** sections of p is hyperbolic.
2. The automorphism $\sigma \mapsto F \circ \sigma \circ f^{-1}$ induced by F on the space of **bounded** sections of p is hyperbolic.
3. There exists a continuous splitting $E = E_s \oplus E_u$ into closed F-invariant subbundles and constants $C > 0$, $0 < \lambda < 1$ such that, for all $n \geq 0$

$$\|F^n_{|E_s}\| \leq C\lambda^n, \quad \|F^{-n}_{|E_u}\| \leq C\lambda^n.$$

When these conditions are satisfied, we say that F is **hyperbolic**. The splitting of the spaces of bounded/continuous sections are induced by the splitting of E. **
Definition: Let M be a manifold, K be a compact subset, U a neighborhood of K, $f : U \to M$ a C^1-embedding such that $f|_K$ is a homeomorphism of K.
Defnition: Let M be a manifold, K be a compact subset, U a neighborhood of K, $f : U \to M$ a C^1-embedding such that $f|_K$ is a homeomorphism of K. We say that the compact f-invariant set K is hyperbolic if the restriction of the tangent map Tf to $TM|_K$ is hyperbolic according to the definition of the last slide.
Definition: Let M be a manifold, K be a compact subset, U a neighborhood of K, $f : U \rightarrow M$ a C^1-embedding such that $f_{|K}$ is a homeomorphism of K.
We say that the compact f-invariant set K is hyperbolic if the restriction of the tangent map Tf to $TM_{|K}$ is hyperbolic according to the definition of the last slide.
Let K be a compact metric space, f be a homeomorphism of K, $p : E \to K$ be a Banach vector bundle over K, and $F : E \to E$ be an automorphism of E over f.

Remark: The splitting $E = E_1 \oplus E_2$ is not assumed to be invariant.
Let K be a compact metric space, f be a homeomorphism of K, $p : E \to K$ be a Banach vector bundle over K, and $F : E \to E$ be an automorphism of E over f. Let $E_x = E_{1,x} \oplus E_{2,x}$ be a (not necessarily continuous) splitting of each fiber into subspaces equipped with norms $\| \cdot \|_{i,x}$, $i = 1, 2$, satisfying, for some $C > 1$ and any $x \in K$, any $v_1 \in E_{1,x}$, $v_2 \in E_{2,x}$

$$
C^{-1} \max(\|v_1\|_{1,x}, \|v_2\|_{2,x}) \leq \|v_1 + v_2\| \leq C \max(\|v_1\|_{1,x}, \|v_2\|_{2,x}).
$$
The conefield criterion (I)

Let K be a compact metric space, f be a homeomorphism of K, $p : E \to K$ be a Banach vector bundle over K, and $F : E \to E$ be an automorphism of E over f.

Let $E_x = E_{1,x} \oplus E_{2,x}$ be a (not necessarily continuous) splitting of each fiber into subspaces equipped with norms $||v||_{i,x}$, $i = 1, 2$, satisfying, for some $C > 1$ and any $x \in K$, any $v_1 \in E_{1,x}$, $v_2 \in E_{2,x}$

$$C^{-1} \max(||v_1||_{1,x}, ||v_2||_{2,x}) \leq ||v_1 + v_2|| \leq C \max(||v_1||_{1,x}, ||v_2||_{2,x}).$$

For $\lambda \in \mathbb{R}_+$, let

$$C_\lambda(x) = \{v = v_1 + v_2 \in E_x, ||v_1||_{1,x} \leq \lambda||v_2||_{2,x}\},$$
The conefield criterion (I)

Let K be a compact metric space, f be a homeomorphism of K, $p : E \to K$ be a Banach vector bundle over K, and $F : E \to E$ be an automorphism of E over f.

Let $E_x = E_{1,x} \oplus E_{2,x}$ be a (not necessarily continuous) splitting of each fiber into subspaces equipped with norms $\| \cdot \|_{i,x}$, $i = 1, 2$, satisfying, for some $C > 1$ and any $x \in K$, any $v_1 \in E_{1,x}$, $v_2 \in E_{2,x}$

$$C^{-1} \max(\|v_1\|_{1,x}, \|v_2\|_{2,x}) \leq \|v_1 + v_2\| \leq C \max(\|v_1\|_{1,x}, \|v_2\|_{2,x}).$$

For $\lambda \in \mathbb{R}_+$, let

$$C_\lambda(x) = \{ v = v_1 + v_2 \in E_x, \|v_1\|_{1,x} \leq \lambda \|v_2\|_{2,x} \},$$

$$C^*_\lambda(x) = \{ v = v_1 + v_2 \in E_x, \|v_2\|_{2,x} \leq \lambda \|v_1\|_{1,x} \},$$

be the cones at x of slope λ associated to this decomposition.
The cone field criterion (I)

Let K be a compact metric space, f be a homeomorphism of K, $p : E \to K$ be a Banach vector bundle over K, and $F : E \to E$ be an automorphism of E over f.

Let $E_x = E_{1,x} \oplus E_{2,x}$ be a (not necessarily continuous) splitting of each fiber into subspaces equipped with norms $|| \cdot ||_{i,x}$, $i = 1, 2$, satisfying, for some $C > 1$ and any $x \in K$, any $v_1 \in E_{1,x}$, $v_2 \in E_{2,x}$

$$C^{-1} \max(||v_1||_{1,x}, ||v_2||_{2,x}) \leq ||v_1 + v_2|| \leq C \max(||v_1||_{1,x}, ||v_2||_{2,x}).$$

For $\lambda \in \mathbb{R}_+$, let

$$C_{\lambda}(x) = \{v = v_1 + v_2 \in E_x, \ ||v_1||_{1,x} \leq \lambda ||v_2||_{2,x} \},$$

$$C^*_{\lambda}(x) = \{v = v_1 + v_2 \in E_x, \ ||v_2||_{2,x} \leq \lambda ||v_1||_{1,x} \},$$

be the cones at x of slope λ associated to this decomposition.

Remark: The splitting $E = E_1 \oplus E_2$ is **not** assumed to be invariant.
Proposition: In this setting, assume there exists $0 < \lambda < 1$, $\mu > 1$ and an integer $m \geq 1$ such that

1. for any $x \in K$, one has $F(C \lambda - 1(x)) \subset C(\lambda f(x))$ (this implies $F^{-1}(C^* \lambda - 1(x)) \subset C^*(\lambda f(x)))$);
2. for any $x \in K$, one has $E_x = F(E_{1,x} f^{-1}(x)) \oplus E_{2,x}$, $x = E_{1,x} \oplus F^{-1}(E_{2,x} f(x))$);
3. for any $x \in K$, $v \in C(\lambda - 1(x))$, $||F_m(v)|| \geq \mu ||v||$;
4. for any $x \in K$, $v \in C^*(\lambda - 1(x))$, $||F^{-m}(v)|| \geq \mu ||v||$.

Then, F is hyperbolic and $E_u(x) \subset C(\lambda x)$, $E_s(x) \subset C^*(\lambda x)$ for all $x \in K$.
The conefield criterion (II)

Proposition: In this setting, assume there exists $0 < \lambda < 1$, $\mu > 1$ and an integer $m \geq 1$ such that

1. for any $x \in K$, one has $F(C_{\lambda^{-1}}(x)) \subset C_{\lambda}(f(x))$ (this implies $F^{-1}(C^*_{\lambda^{-1}}(x)) \subset C^*_\lambda(f(x))$);

Then, F is hyperbolic and $E_* u(x) \subset C_{\lambda}(x)$, $E_s(x) \subset C^*_{\lambda}(x)$ for all $x \in K$.

Jean-Christophe Yoccoz

A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Proposition: In this setting, assume there exists \(0 < \lambda < 1, \mu > 1\) and an integer \(m \geq 1\) such that

1. for any \(x \in K\), one has \(F(C_{\lambda^{-1}}(x)) \subset C_{\lambda}(f(x))\) (this implies \(F^{-1}(C_{\lambda^{-1}}^*(x)) \subset C_{\lambda}^*(f(x))\));

2. for any \(x \in K\), one has
\[
E_x = F(E_{1,f^{-1}(x)}) \oplus E_{2,x} = E_{1,x} \oplus F^{-1}(E_{2,f(x)})
\]
Proposition: In this setting, assume there exists $0 < \lambda < 1$, $\mu > 1$ and an integer $m \geq 1$ such that

1. for any $x \in K$, one has $F(C_{\lambda-1}(x)) \subset C_{\lambda}(f(x))$ (this implies $F^{-1}(C_{\lambda-1}^*(x)) \subset C_{\lambda}^*(f(x))$);

2. for any $x \in K$, one has

 $$E_x = F(E_{1,f^{-1}(x)}) \oplus E_{2,x} = E_{1,x} \oplus F^{-1}(E_{2,f(x)})$$;

3. for any $x \in K$, $v \in C_{\lambda-1}(x)$, $\|F^m(v)\|_{f^m(x)} \geq \mu \|v\|_x$;
The conefield criterion (II)

Proposition: In this setting, assume there exists $0 < \lambda < 1$, $\mu > 1$ and an integer $m \geq 1$ such that

1. for any $x \in K$, one has $F(C_{\lambda-1}(x)) \subset C_{\lambda}(f(x))$ (this implies $F^{-1}(C^*_{\lambda-1}(x)) \subset C^*_\lambda(f(x)))$;

2. for any $x \in K$, one has
 \[E_x = F(E_{1,f^{-1}(x)}) \oplus E_{2,x} = E_{1,x} \oplus F^{-1}(E_{2,f(x)}); \]

3. for any $x \in K$, $v \in C_{\lambda-1}(x)$, $\|F^m(v)\|_{f^m(x)} \geq \mu \|v\|_x$;

4. for any $x \in K$, $v \in C^*_{\lambda-1}(x)$, $\|F^{-m}(v)\|_{f^{-m}(x)} \geq \mu \|v\|_x$.

Then, F is hyperbolic and $E_u(x) \subset C_{\lambda}(x)$, $E_s(x) \subset C^*_{\lambda}(x)$ for all $x \in K$.

Jean-Christophe Yoccoz
A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Proposition: In this setting, assume there exists $0 < \lambda < 1$, $\mu > 1$ and an integer $m \geq 1$ such that

1. for any $x \in K$, one has $F(C_{\lambda^{-1}}(x)) \subset C_{\lambda}(f(x))$ (this implies $F^{-1}(C^*_{\lambda^{-1}}(x)) \subset C^*_\lambda(f(x)))$;

2. for any $x \in K$, one has $E_x = F(E_{1,f^{-1}(x)}) \oplus E_{2,x} = E_{1,x} \oplus F^{-1}(E_{2,f(x)});

3. for any $x \in K$, $v \in C_{\lambda^{-1}}(x)$, $\|F^m(v)\|_{f^m(x)} \geq \mu \|v\|_x$;

4. for any $x \in K$, $v \in C^*_{\lambda^{-1}}(x)$, $\|F^{-m}(v)\|_{f^{-m}(x)} \geq \mu \|v\|_x$.

Then, F is hyperbolic and $E_u(x) \subset C_\lambda(x)$, $E_s(x) \subset C^*_\lambda(x)$ for all $x \in K$.

Jean-Christophe Yoccoz

A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Let M be a manifold, K be a compact subset, U a neighborhood of K, $f : U \rightarrow M$ a C^1-embedding such that $f|_K$ is a homeomorphism of K.

Corollary: Assume that K is hyperbolic. Then there exists a compact neighborhood $W \subset U$ of K such that the maximal compact invariant set $\bigcap_{n \in \mathbb{Z}} f^{-n}(W) \supset K$ is also hyperbolic.

Definition: An invariant compact set $K \subset U$ is locally maximal if there exists a compact neighborhood $W \subset U$ of K such that $\bigcap_{n \in \mathbb{Z}} f^{-n}(W) = K$.

Jean-Christophe Yoccoz
A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Let M be a manifold, K be a compact subset, U a neighborhood of K, $f : U \to M$ a C^1-embedding such that $f|_K$ is a homeomorphism of K.

Corollary: Assume that K is hyperbolic. Then there exists a compact neighborhood $W \subset U$ of K such that the maximal compact invariant set $\bigcap_{n \in \mathbb{Z}} f^{-n}(W) \supset K$ is also hyperbolic.
Let M be a manifold, K be a compact subset, U a neighborhood of K, $f : U \to M$ a C^1-embedding such that $f|_K$ is a homeomorphism of K.

Corollary: Assume that K is hyperbolic. Then there exists a compact neighborhood $W \subset U$ of K such that the maximal compact invariant set $\bigcap_{n \in \mathbb{Z}} f^{-n}(W) \supset K$ is also hyperbolic.

Definition: An invariant compact set $K \subset U$ is *locally maximal* if there exists a compact neighborhood $W \subset U$ of K such that $\bigcap_{n \in \mathbb{Z}} f^{-n}(W) = K$.
Definition: A C^1-diffeomorphism of a compact connected manifold M is an *Anosov diffeomorphism* if the (compact invariant) set M is hyperbolic.
Definition: A C^1-diffeomorphism of a compact connected manifold M is an Anosov diffeomorphism if the (compact invariant) set M is hyperbolic. Anosov diffeomorphisms form an open (frequently empty!) subset of $\text{Diff}^1(M)$.

Let $A \in \text{SL}(d, \mathbb{Z})$ be a hyperbolic matrix. It preserves \mathbb{Z}^d hence induces a diffeomorphism of \mathbb{T}^d, which is Anosov.

Theorem: (Franks) Let $A \in \text{SL}(d, \mathbb{Z})$ be hyperbolic and $f \in \text{Diff}^1(\mathbb{T}^d)$ be homotopic to A. Then f is semi-conjugate to A: there exists a unique continuous surjective map $h: \mathbb{T}^d \to \mathbb{T}^d$ homotopic to the identity such that $h \circ f = A \circ h$. If f is Anosov, h is a homeomorphism. Conversely, any Anosov diffeomorphism of the torus is homotopic to a linear one.
Definition: A C^1-diffeomorphism of a compact connected manifold M is an *Anosov diffeomorphism* if the (compact invariant) set M is hyperbolic.

Anosov diffeomorphisms form an open (frequently empty!) subset of $\text{Diff}^1(M)$.

Let $A \in SL(d, \mathbb{Z})$ be a hyperbolic matrix.

Theorem: (Franks) Let $A \in SL(d, \mathbb{Z})$ be hyperbolic and $f \in \text{Diff}^1(T^d)$ be homotopic to A. Then f is semi-conjugate to A: there exists a unique continuous surjective map $h: T^d \to T^d$ homotopic to the identity such that $h \circ f = A \circ h$.

If f is Anosov, h is a homeomorphism.

Conversely, any Anosov diffeomorphism of the torus is homotopic to a linear one.
Definition: A C^1-diffeomorphism of a compact connected manifold M is an *Anosov diffeomorphism* if the (compact invariant) set M is hyperbolic.

Anosov diffeomorphisms form an open (frequently empty!) subset of $\text{Diff}^1(M)$.

Let $A \in \text{SL}(d, \mathbb{Z})$ be a hyperbolic matrix. It preserves \mathbb{Z}^d hence induces a diffeomorphism of \mathbb{T}^d.

Theorem: (Franks) Let $A \in \text{SL}(d, \mathbb{Z})$ be hyperbolic and $f \in \text{Diff}^1(T^d)$ be homotopic to A. Then f is semi-conjugate to A: there exists a unique continuous surjective map $h : T^d \to T^d$ homotopic to the identity such that $h \circ f = A \circ h$.

If f is Anosov, h is a homeomorphism.

Conversely, any Anosov diffeomorphism of the torus is homotopic to a linear one.
Definition: A C^1-diffeomorphism of a compact connected manifold M is an Anosov diffeomorphism if the (compact invariant) set M is hyperbolic.

Anosov diffeomorphisms form an open (frequently empty!) subset of $\text{Diff}^1(M)$.

Let $A \in SL(d, \mathbb{Z})$ be a hyperbolic matrix. It preserves \mathbb{Z}^d hence induces a diffeomorphism of \mathbb{T}^d, which is Anosov.
Definition: A C^1-diffeomorphism of a compact connected manifold M is an *Anosov diffeomorphism* if the (compact invariant) set M is hyperbolic.

Anosov diffeomorphisms form an open (frequently empty!) subset of $\text{Diff}^1(M)$.

Let $A \in SL(d, \mathbb{Z})$ be a hyperbolic matrix. It preserves \mathbb{Z}^d hence induces a diffeomorphism of \mathbb{T}^d, which is Anosov.

Theorem: (Franks) Let $A \in SL(d, \mathbb{Z})$ be hyperbolic and $f \in \text{Diff}^1(\mathbb{T}^d)$ be homotopic to A. Then f is semi-conjugate to A: there exists a unique continuous surjective map $h : \mathbb{T}^d \to \mathbb{T}^d$ homotopic to the identity such that $h \circ f = A \circ h$.

If f is Anosov, h is a homeomorphism. Conversely, any Anosov diffeomorphism of the torus is homotopic to a linear one.
Examples (I): Anosov diffeomorphisms

Definition: A C^1-diffeomorphism of a compact connected manifold M is an *Anosov diffeomorphism* if the (compact invariant) set M is hyperbolic.

Anosov diffeomorphisms form an open (frequently empty!) subset of $\text{Diff}^1(M)$.

Let $A \in \text{SL}(d, \mathbb{Z})$ be a hyperbolic matrix. It preserves \mathbb{Z}^d hence induces a diffeomorphism of \mathbb{T}^d, which is Anosov.

Theorem: (Franks) Let $A \in \text{SL}(d, \mathbb{Z})$ be hyperbolic and $f \in \text{Diff}^1(\mathbb{T}^d)$ be homotopic to A. Then f is semi-conjugate to A: there exists a unique continuous surjective map $h : \mathbb{T}^d \to \mathbb{T}^d$ homotopic to the identity such that $h \circ f = A \circ h$. If f is Anosov, h is a homeomorphism.
Definition: A C^1-diffeomorphism of a compact connected manifold M is an *Anosov diffeomorphism* if the (compact invariant) set M is hyperbolic.

Anosov diffeomorphisms form an open (frequently empty!) subset of $\text{Diff}^1(M)$.

Let $A \in SL(d, \mathbb{Z})$ be a hyperbolic matrix. It preserves \mathbb{Z}^d hence induces a diffeomorphism of \mathbb{T}^d, which is Anosov.

Theorem: (Franks) Let $A \in SL(d, \mathbb{Z})$ be hyperbolic and $f \in \text{Diff}^1(\mathbb{T}^d)$ be homotopic to A. Then f is semi-conjugate to A: there exists a unique continuous surjective map $h : \mathbb{T}^d \to \mathbb{T}^d$ homotopic to the identity such that $h \circ f = A \circ h$. If f is Anosov, h is a homeomorphism.

Conversely, any Anosov diffeomorphism of the torus is homotopic to a linear one.
Examples (II): The solenoid

Let $D = \{ z \in \mathbb{C}, |z| < 1 \}$ and $f : T \times D \to T \times D$ be defined by

$$f(\theta, z) = (2\theta, \frac{1}{2} \exp(2\pi i \theta) + \frac{1}{4} z).$$
Examples (II): The solenoid

Let $\mathbb{D} = \{z \in \mathbb{C}, |z| < 1\}$ and $f : \mathbb{T} \times \mathbb{D} \to \mathbb{T} \times \mathbb{D}$ be defined by

$$f(\theta, z) = (2\theta, \frac{1}{2} \exp(2\pi i \theta) + \frac{1}{4} z).$$

The maximal f-invariant set in $\mathbb{T} \times \mathbb{D}$ is the solenoid

$$S := \bigcap_{n \geq 0} f^n(\mathbb{T} \times \mathbb{D})$$
Examples (II): The solenoid

Let $\mathbb{D} = \{ z \in \mathbb{C}, |z| < 1 \}$ and $f : \mathbb{T} \times \mathbb{D} \to \mathbb{T} \times \mathbb{D}$ be defined by

$$f(\theta, z) = (2\theta, \frac{1}{2} \exp(2\pi i \theta) + \frac{1}{4} z).$$

The maximal f-invariant set in $\mathbb{T} \times \mathbb{D}$ is the solenoid

$$S := \bigcap_{n \geq 0} f^n(\mathbb{T} \times \mathbb{D})$$

which is compact, connected and hyperbolic (use the conefield criterion!).
Examples (II): The solenoid

Let $\mathbb{D} = \{z \in \mathbb{C}, |z| < 1\}$ and $f : \mathbb{T} \times \mathbb{D} \to \mathbb{T} \times \mathbb{D}$ be defined by

$$f(\theta, z) = (2\theta, \frac{1}{2} \exp(2\pi i \theta) + \frac{1}{4} z).$$

The maximal f-invariant set in $\mathbb{T} \times \mathbb{D}$ is the solenoid

$$S := \bigcap_{n \geq 0} f^n(\mathbb{T} \times \mathbb{D})$$

which is compact, connected and hyperbolic (use the conefield criterion!).

The projection $(\theta, z) \mapsto \theta$ from S to \mathbb{T} is a semi-conjugacy between $f|_S$ and the doubling map $\theta \mapsto 2\theta$ on \mathbb{T}.
Examples (II): The solenoid

Let \(\mathbb{D} = \{ z \in \mathbb{C}, |z| < 1 \} \) and \(f: \mathbb{T} \times \mathbb{D} \to \mathbb{T} \times \mathbb{D} \) be defined by

\[
f(\theta, z) = (2\theta, \frac{1}{2} \exp(2\pi i \theta) + \frac{1}{4} z).
\]

The maximal \(f \)-invariant set in \(\mathbb{T} \times \mathbb{D} \) is the solenoid

\[
S := \bigcap_{n \geq 0} f^n(\mathbb{T} \times \mathbb{D})
\]

which is compact, connected and hyperbolic (use the conefield criterion!).

The projection \((\theta, z) \mapsto \theta\) from \(S \) to \(\mathbb{T} \) is a semi-conjugacy between \(f|_S \) and the doubling map \(\theta \mapsto 2\theta \) on \(\mathbb{T} \). It identifies \((S, f|_S)\) with the projective limit associated with the doubling map.
Examples (III): Smale’s horseshoe (in the Hénon family)

The Hénon family (Hénon, 1968) is the 2-parameter family of diffeomorphisms of \mathbb{R}^2 defined by

$$H_{b,c}(x, y) := (x^2 + c - by, x).$$
Examples (III): Smale’s horseshoe (in the Hénon family)

The Hénon family (Hénon, 1968) is the 2-parameter family of diffeomorphisms of \mathbb{R}^2 defined by

$$H_{b,c}(x, y) := (x^2 + c - by, x).$$

The inverse is given by

$$H_{b,c}^{-1}(x, y) := (y, b^{-1}(y^2 + c - x)).$$

Observe that $H_{b,c}$ has constant Jacobian b.

Denote by $K_{b,c}$ the set of points with a bounded orbit. It is a compact (exercise) invariant set. Fix $b > 0$ and consider large negative values for the second parameter c. For such values $K_{b,c} = \bigcap_{n \in \mathbb{Z}} H_{b,c}^{-n}(\mathbb{R}^2)$, where \mathbb{R}^2 is the square $[-(2|c|)^{1/2}, (2|c|)^{1/2}]^2$.

Jean-Christophe Yoccoz

A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Examples (III): Smale’s horseshoe (in the Hénon family)

The Hénon family (Hénon, 1968) is the 2-parameter family of diffeomorphisms of \mathbb{R}^2 defined by

$$H_{b,c}(x, y) := (x^2 + c - by, x).$$

The inverse is given by

$$H_{b,c}^{-1}(x, y) := (y, b^{-1}(y^2 + c - x)).$$

Observe that $H_{b,c}$ has constant Jacobian b. Denote by $K_{b,c}$ the set of points with a bounded orbit. It is a compact (exercise) invariant set.
The Hénon family (Hénon, 1968) is the 2-parameter family of diffeomorphisms of \mathbb{R}^2 defined by

$$H_{b,c}(x, y) := (x^2 + c - by, x).$$

The inverse is given by

$$H_{b,c}^{-1}(x, y) := (y, b^{-1}(y^2 + c - x)).$$

Observe that $H_{b,c}$ has constant Jacobian b. Denote by $K_{b,c}$ the set of points with a bounded orbit. It is a compact (exercise) invariant set.

Fix $b > 0$ and consider large negative values for the second parameter c. For such values

$$K_{b,c} = \bigcap_{n \in \mathbb{Z}} H_{b,c}^{-n}(R),$$

where R is the square $[-(2|c|)^{1/2}, (2|c|)^{1/2}]^2$.

Jean-Christophe Yoccoz

A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
One has

\[H_{b,c}^{-1}(R) = \{ |x| \leq (2|c|)^{\frac{1}{2}}, |x^2 + c - by| \leq (2|c|)^{\frac{1}{2}} \}, \]

\[H_{b,c}(R) = \{ |y| \leq (2|c|)^{\frac{1}{2}}, |y^2 + c - x| \leq (2|c|)^{\frac{1}{2}} b \}, \]
One has

\[H_{b,c}^{-1}(R) = \{ |x| \leq (2|c|)^{1/2}, |x^2 + c - by| \leq (2|c|)^{1/2} \}, \]

\[H_{b,c}(R) = \{ |y| \leq (2|c|)^{1/2}, |y^2 + c - x| \leq (2|c|)^{1/2} b \}, \]

hence, for \(|c|\) large enough, \(R \cap H_{b,c}^{-1}(R) \) has two ”vertical-like” components in which \(|x| \geq (\frac{1}{2}|c|)^{1/2} \).
One has

\[
H^{-1}_{b,c}(R) = \{ |x| \leq (2|c|)^{\frac{1}{2}}, |x^2 + c - by| \leq (2|c|)^{\frac{1}{2}} \},
\]

\[
H_{b,c}(R) = \{ |y| \leq (2|c|)^{\frac{1}{2}}, |y^2 + c - x| \leq (2|c|)^{\frac{1}{2}} b \},
\]

hence, for \(|c|\) large enough, \(R \cap H^{-1}_{b,c}(R)\) has two "vertical-like" components in which \(|x| \geq (\frac{1}{2}|c|)^{\frac{1}{2}}\), which are sent by \(H_{b,c}\) onto the two "horizontal-like" components of \(R \cap H_{b,c}(R)\) in which \(|y| \geq (\frac{1}{2}|c|)^{\frac{1}{2}}\).
One has

\[H_{b,c}^{-1}(R) = \{ |x| \leq (2|c|)^{\frac{1}{2}}, |x^2 + c - by| \leq (2|c|)^{\frac{1}{2}} \}, \]

\[H_{b,c}(R) = \{ |y| \leq (2|c|)^{\frac{1}{2}}, |y^2 + c - x| \leq (2|c|)^{\frac{1}{2}}b \}, \]

hence, for \(|c| \) large enough, \(R \cap H_{b,c}^{-1}(R) \) has two "vertical-like" components in which \(|x| \geq (\frac{1}{2}|c|)^{\frac{1}{2}} \), which are sent by \(H_{b,c} \) onto the two "horizontal-like" components of \(R \cap H_{b,c}(R) \) in which \(|y| \geq (\frac{1}{2}|c|)^{\frac{1}{2}} \).

As the jacobian matrices of \(H_{b,c}, H_{b,c}^{-1} \) are respectively

\[
\begin{pmatrix} 2x & -b \\ 1 & 0 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 \\ -b^{-1} & 2b^{-1}y \end{pmatrix}
\]

the conefield criterion shows that \(K_{b,c} \) is hyperbolic.
Definition: A homeomorphism f of a compact metric space (X, d) is *expansive* if there exists $\varepsilon > 0$ such that, for all distinct $x, y \in X$, one has $d(f^n(x), f^n(y)) > \varepsilon$ for some $n \in \mathbb{Z}$.

Proposition: Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$. Then the restriction of f to K is expansive.
Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$. Theorem: There exist a neighborhood U of f in $C^1(U, M)$ and a continuous map H from U to $C(K, M)$ such that ▶ for any $g \in U$, the set $K_g := H(g)(K)$ is a hyperbolic compact invariant set for g, satisfying $K_g \circ H(g) = H(g) \circ f$; ▶ for any $g \in U$, $H(g)$ is injective and is the unique map close to the identity satisfying the relation above (in particular $H(f)$ is the identity).
Hyperbolic continuation

Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$.

Theorem: There exist a neighborhood U of f in $C^1(U, M)$ and a continuous map H from U to $C(K, M)$ such that

1. For any $g \in U$, the set $K_g := H(g)(K)$ is a hyperbolic compact invariant set for g, satisfying $K_g \circ H(g) = H(g) \circ f$;
2. For any $g \in U$, $H(g)$ is injective and is the unique map close to the identity satisfying the relation above (in particular $H(f)$ is the identity).

Jean-Christophe Yoccoz
A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$.

Theorem: There exist a neighborhood \mathcal{U} of f in $C^1(U, M)$ and a continuous map \mathcal{H} from \mathcal{U} to $C(K, M)$ such that

1. for any $g \in \mathcal{U}$, the set $K_g := \mathcal{H}(g)(K)$ is a hyperbolic compact invariant set for g, satisfying on K

\[g \circ \mathcal{H}(g) = \mathcal{H}(g) \circ f ; \]
Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$.

Theorem: There exist a neighborhood U of f in $C^1(U, M)$ and a continuous map \mathcal{H} from U to $C(K, M)$ such that

- for any $g \in U$, the set $K_g := \mathcal{H}(g)(K)$ is a hyperbolic compact invariant set for g, satisfying on K

 $$g \circ \mathcal{H}(g) = \mathcal{H}(g) \circ f;$$

- for any $g \in U$, $\mathcal{H}(g)$ is injective and is the unique map close to the identity satisfying the relation above (in particular $\mathcal{H}(f)$ is the identity).
Let (X, d) be a compact metric space and let f be a homeomorphism of X.
Pseudo-orbits and the chain recurrent set

Let \((X, d)\) be a compact metric space and let \(f\) be a homeomorphism of \(X\).

Definitions: Let \(\delta > 0\). A \(\delta\)-pseudo-orbit for \(f\) is a sequence \((x_n)_{n \in \mathbb{Z}}\) in \(X\) such that

\[
d(f(x_n), x_{n+1}) < \delta, \quad \forall n \in \mathbb{Z}.
\]

A point \(x \in X\) is chain-recurrent if, for any \(\delta > 0\), there exists a periodic \(\delta\)-pseudo-orbit through \(x\).

The chain-recurrent set \(R(f)\) is the set of chain-recurrent points. It is compact and \(f\)-invariant.

Remark: Chain-recurrence is the weakest of several notions of recurrence in dynamics.
Let (X, d) be a compact metric space and let f be a homeomorphism of X.

Definitions: Let $\delta > 0$. A δ-pseudo-orbit for f is a sequence $(x_n)_{n \in \mathbb{Z}}$ in X such that

$$d(f(x_n), x_{n+1}) < \delta, \quad \forall n \in \mathbb{Z}.$$

A point $x \in X$ is *chain-recurrent* if, for any $\delta > 0$, there exists a periodic δ-pseudo-orbit through x.

The chain-recurrent set $R(f)$ is the set of chain-recurrent points. It is compact and f-invariant.

Remark: Chain-recurrence is the weakest of several notions of recurrence in dynamics.
Let \((X, d)\) be a compact metric space and let \(f\) be a homeomorphism of \(X\).

Definitions: Let \(\delta > 0\). A \(\delta\)-pseudo-orbit for \(f\) is a sequence \((x_n)_{n \in \mathbb{Z}}\) in \(X\) such that

\[
d(f(x_n), x_{n+1}) < \delta, \quad \forall n \in \mathbb{Z}.
\]

A point \(x \in X\) is *chain-recurrent* if, for any \(\delta > 0\), there exists a periodic \(\delta\)-pseudo-orbit through \(x\). The *chain-recurrent set* \(R(f)\) is the set of chain-recurrent points. It is compact and \(f\)-invariant.

Remark: Chain-recurrence is the weakest of several notions of recurrence in dynamics. Jean-Christophe Yoccoz

A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Let \((X, d)\) be a compact metric space and let \(f\) be a homeomorphism of \(X\).

Definitions: Let \(\delta > 0\). A \(\delta\)-pseudo-orbit for \(f\) is a sequence \((x_n)_{n \in \mathbb{Z}}\) in \(X\) such that

\[
d(f(x_n), x_{n+1}) < \delta, \quad \forall n \in \mathbb{Z}.
\]

A point \(x \in X\) is *chain-recurrent* if, for any \(\delta > 0\), there exists a periodic \(\delta\)-pseudo-orbit through \(x\). The *chain-recurrent set* \(R(f)\) is the set of chain-recurrent points. It is compact and \(f\)-invariant.

Remark: Chain-recurrence is the weakest of several notions of recurrence in dynamics.
The shadowing lemma

Theorem: Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$. There exists $C > 0$ such that, for any δ-pseudo-orbit $(x_n)_{n \in \mathbb{Z}}$ in K, there exists an orbit $(f^n(x))_{n \in \mathbb{Z}}$ shadowing it within $C\delta$:

$$d(f^n(x), x_n) \leq C\delta, \quad \forall n \in \mathbb{Z}.$$
The shadowing lemma

Theorem: Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$. There exists $C > 0$ such that, for any δ-pseudo-orbit $(x_n)_{n \in \mathbb{Z}}$ in K, there exists an orbit $(f^n(x))_{n \in \mathbb{Z}}$ shadowing it within $C\delta$:

$$d(f^n(x), x_n) \leq C\delta, \quad \forall n \in \mathbb{Z}.$$

Remarks:

1. If δ is small enough, the shadowing orbit is unique by expansivity.
The shadowing lemma

Theorem: Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$. There exists $C > 0$ such that, for any δ-pseudo-orbit $(x_n)_{n \in \mathbb{Z}}$ in K, there exists an orbit $(f^n(x))_{n \in \mathbb{Z}}$ shadowing it within $C\delta$:

$$d(f^n(x), x_n) \leq C\delta, \quad \forall n \in \mathbb{Z}.$$

Remarks:

1. If δ is small enough, the shadowing orbit is unique by expansivity.

2. In general, the shadowing orbit is **not** contained in K, only in a neighborhood of K (and therefore in a larger hyperbolic compact invariant set containing K).
Local stable manifolds

Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$.

There exist Riemannian metrics on U, with associated distance d, such that the local stable manifolds $W_{s_{loc}}(x)$ defined for $x \in K$ by $W_{s_{loc}}(x) = \{ y \in U, \ d(f^n(y), f^n(x)) < 1, \forall n \geq 0 \}$ have the following properties:

▶ for $y \in W_{s_{loc}}(x)$, $n \geq 0$, one has $d(f^n(y), f^n(x)) \leq \kappa^n d(y, x)$ for all $n \geq 0$; in particular, one has $f(W_{s_{loc}}(x)) \subset W_{s_{loc}}(f(x));$

▶ for $x \in K$, $W_{s_{loc}}(x)$ is the image of a C^1-embedding $j_x : \{ v \in B_1(E_s, x) \} \to U$ depending continuously on x and satisfying $j_x(0) = x, \quad T_0 j_x = \text{id}_{E_s}.$

Moreover, when f is of class C^r (r integer $\geq 1,$ $r = \infty,$ $r = \omega$), then j_x is also C^r and depends continuously on x in the C^r-topology.
Local stable manifolds

Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$. Let $0 < \kappa' < \kappa < 1$ be such that, for some $C > 0$, one has $\|Tf^n|_{E_s}\| \leq C\kappa'^n$ for all $n \geq 0$.
Local stable manifolds

Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$. Let $0 < \kappa' < \kappa < 1$ be such that, for some $C > 0$, one has $\|Tf^n_{|E_s}\| \leq C\kappa'^n$ for all $n \geq 0$.

There exist Riemannian metrics on U, with associated distance d, such that the local stable manifolds $W^s_{loc}(x)$ defined for $x \in K$ by

$$W^s_{loc}(x) = \{y \in U, d(f^n(y), f^n(x)) < 1, \forall n \geq 0\}$$

have the following properties:
Local stable manifolds

Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$. Let $0 < \kappa' < \kappa < 1$ be such that, for some $C > 0$, one has $\|Tf^n \|_{E_s} \leq C \kappa'^n$ for all $n \geq 0$.

There exist Riemannian metrics on U, with associated distance d, such that the local stable manifolds $W^s_{loc}(x)$ defined for $x \in K$ by

$$W^s_{loc}(x) = \{y \in U, d(f^n(y), f^n(x)) < 1, \forall n \geq 0\}$$

have the following properties:

- for $y \in W^s_{loc}(x)$, $n \geq 0$, one has $d(f^n(y), f^n(x)) \leq \kappa^n d(y, x)$ for all $n \geq 0$;
Local stable manifolds

Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$. Let $0 < \kappa' < \kappa < 1$ be such that, for some $C > 0$, one has $\| T_{f^n} |_{E_s} \| \leq C \kappa'^n$ for all $n \geq 0$.

There exist Riemannian metrics on U, with associated distance d, such that the local stable manifolds $W^s_{loc}(x)$ defined for $x \in K$ by

$$W^s_{loc}(x) = \{ y \in U, \ d(f^n(y), f^n(x)) < 1, \ \forall n \geq 0 \}$$

have the following properties:

- for $y \in W^s_{loc}(x)$, $n \geq 0$, one has $d(f^n(y), f^n(x)) \leq \kappa^n d(y, x)$ for all $n \geq 0$; in particular, one has $f(W^s_{loc}(x)) \subset W^s_{loc}(f(x))$;

Jean-Christophe Yoccoz

A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Local stable manifolds

Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$. Let $0 < \kappa' < \kappa < 1$ be such that, for some $C > 0$, one has $\|Tf^n|_{E_s}\| \leq C \kappa'^n$ for all $n \geq 0$.

There exist Riemannian metrics on U, with associated distance d, such that the local stable manifolds $W^s_{loc}(x)$ defined for $x \in K$ by

$$W^s_{loc}(x) = \{ y \in U, d(f^n(y), f^n(x)) < 1, \forall n \geq 0 \}$$

have the following properties:

- for $y \in W^s_{loc}(x)$, $n \geq 0$, one has $d(f^n(y), f^n(x)) \leq \kappa^n d(y, x)$ for all $n \geq 0$; in particular, one has $f(W^s_{loc}(x)) \subset W^s_{loc}(f(x));$

- for $x \in K$, $W^s_{loc}(x)$ is the image of a C^1-embedding $j_x : \{ v \in B_1(E_{s,x}) \} \to U$ depending continuously on x and satisfying $j_x(0) = x$, $T_0j_x = \text{id}_{E_{s,x}}$.

Jean-Christophe Yoccoz

A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Local stable manifolds

Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$. Let $0 < \kappa' < \kappa < 1$ be such that, for some $C > 0$, one has $\|Tf^n_E\| \leq C\kappa'^n$ for all $n \geq 0$.

There exist Riemannian metrics on U, with associated distance d, such that the local stable manifolds $W^s_{loc}(x)$ defined for $x \in K$ by

$$W^s_{loc}(x) = \{y \in U, d(f^n(y), f^n(x)) < 1, \forall n \geq 0\}$$

have the following properties:

- for $y \in W^s_{loc}(x), n \geq 0$, one has $d(f^n(y), f^n(x)) \leq \kappa^n d(y, x)$ for all $n \geq 0$; in particular, one has $f(W^s_{loc}(x)) \subset W^s_{loc}(f(x))$;

- for $x \in K$, $W^s_{loc}(x)$ is the image of a C^1-embedding $j_x : \{v \in B_1(E_s, x)\} \to U$ depending continuously on x and satisfying $j_x(0) = x, T_0 j_x = \text{id}_{E_s, x}$.

Moreover, when f is of class C^r (r integer ≥ 1, $r = \infty$, $r = \omega$), then j_x is also C^r and depends continuously on x in the C^r-topology.
Let K be a hyperbolic compact invariant set for a C^1-diffeomorphism f of a manifold M.
Let K be a hyperbolic compact invariant set for a C^1-diffeomorphism f of a manifold M. For $x \in K$, define the (global) stable manifold of x as

$$W^s(x) := \{ y \in M, \lim_{n \to +\infty} d(f^n(y), f^n(x)) = 0 \}$$

(which is independent from the metrics d).
Let K be a hyperbolic compact invariant set for a C^1-diffeomorphism f of a manifold M.
For $x \in K$, define the (global) stable manifold of x as

$$W^s(x) := \{ y \in M, \lim_{n \to +\infty} d(f^n(y), f^n(x)) = 0 \}$$

(which is independent from the metrics d).
Clearly, one has

$$W^s(x) = \bigcup_{n \geq 0} f^{-n}(W^s_{loc}(f^n(x)))$$
and it follows that

- for any $y \in W^s(x)$,

$$
\lim_{n \to +\infty} \kappa^{-n} d(f^n(y), f^n(x)) = 0,
$$

with $\kappa \in (0, 1)$ as before;
and it follows that

- for any \(y \in W^s(x) \),
 \[
 \lim_{{n \to +\infty}} \kappa^{-n} d(f^n(y), f^n(x)) = 0,
 \]
 with \(\kappa \in (0, 1) \) as before;

- the stable manifold \(W^s(x) \) is the image of an injective immersion of \(E_{s,x} \), of class \(C^r \) if \(f \) is of class \(C^r \), depending continuously on \(x \) on compact subsets.
Local product structure

Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$.

Proposition: The following are equivalent:

1. K is locally maximal;
2. K has local product structure: for $x, y \in K$ close enough, the (unique, transverse) point of intersection of $W_{s\text{loc}}(x)$ and $W_{u\text{loc}}(y)$ belongs to K;
3. For $\delta > 0$ small enough, δ-pseudo-orbits in K are shadowed by orbits of K.

Jean-Christophe Yoccoz
A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Local product structure

Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$.

Proposition: The following are equivalent:

1. K is locally maximal;

2. K has local product structure: for $x, y \in K$ close enough, the (unique, transverse) point of intersection of $W^{s}_{loc}(x)$ and $W^{u}_{loc}(y)$ belongs to K;

3. For $\delta > 0$ small enough, δ-pseudo-orbits in K are shadowed by orbits of K.

Jean-Christophe Yoccoz
A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$.

Proposition: The following are equivalent:

1. K is locally maximal;
2. K has *local product structure*: for $x, y \in K$ close enough, the (unique, transverse) point of intersection of $W^s_{\text{loc}}(x)$ and $W^u_{\text{loc}}(y)$ belongs to K;
3. For $\delta > 0$ small enough, δ-pseudo-orbits in K are shadowed by orbits of K.

Jean-Christophe Yoccoz

A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Local product structure

Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \rightarrow M$.

Proposition: The following are equivalent:

1. K is locally maximal;
2. K has *local product structure*: for $x, y \in K$ close enough, the (unique, transverse) point of intersection of $W_{loc}^s(x)$ and $W_{loc}^u(y)$ belongs to K;
3. For $\delta > 0$ small enough, δ-pseudo-orbits in K are shadowed by orbits of K.
Spectral decomposition

Definition: A homeomorphism f of a compact metric space X is *topologically mixing* (resp. *transitive*) if, for any nonempty open subsets U, V of X, one has $f^n(U) \cap V \neq \emptyset$ for all (resp. some) n large enough.

Theorem: (Smale) Let K be a hyperbolic compact invariant set for a C^1-embedding $f: U \to M$. Assume that K is locally maximal and $f|_K$ is chain-recurrent. Then there exists a partition $K = \bigoplus_{i=1}^\ell \bigoplus_{j \in \mathbb{Z}} s_i K_{i,j}$ into compact subsets such that $f(K_{i,j}) = K_{i,j} + 1$, $\forall 1 \leq i \leq \ell, j \in \mathbb{Z}$, and the restriction of f to $K_{i,j}$ is topologically mixing. (This implies that the restriction of f to the hyperbolic compact invariant set $\bigoplus_{j \in \mathbb{Z}} s_i K_{i,j}$ is transitive.)
Definition: A homeomorphism f of a compact metric space X is *topologically mixing* (resp. *transitive*) if, for any nonempty open subsets U, V of X, one has $f^n(U) \cap V \neq \emptyset$ for all (resp. some) n large enough.

Theorem: (Smale) Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$. Then there exists a partition $K = \bigoplus_{i=1}^{\ell} \bigoplus_{j \in \mathbb{Z}} K_{i,j}$ into compact subsets such that $f(K_{i,j}) = K_{i,j} + 1$, $\forall 1 \leq i \leq \ell, \forall j \in \mathbb{Z}$, and the restriction of f to $K_{i,j}$ is topologically mixing. (This implies that the restriction of f to the hyperbolic compact invariant set $\bigoplus_{j \in \mathbb{Z}} K_{i,j}$ is transitive.)
Definition: A homeomorphism f of a compact metric space X is topologically mixing (resp. transitive) if, for any nonempty open subsets U, V of X, one has $f^n(U) \cap V \neq \emptyset$ for all (resp. some) n large enough.

Theorem: (Smale) Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$. Assume that K is locally maximal and $f|_K$ is chain-recurrent. (This implies that the restriction of f to the hyperbolic compact invariant set $\bigcup_{j \in \mathbb{Z}} K_i, j$ is transitive.)
Spectral decomposition

Definition: A homeomorphism f of a compact metric space X is *topologically mixing* (resp. *transitive*) if, for any nonempty open subsets U, V of X, one has $f^n(U) \cap V \neq \emptyset$ for all (resp. some) n large enough.

Theorem: (Smale) Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$. Assume that K is locally maximal and $f|_K$ is chain-recurrent. Then there exists a partition

$$K = \bigsqcup_{i=1}^{\ell} \bigsqcup_{j \in \mathbb{Z}_{s_i}} K_{i,j}$$

into compact subsets such that

(This implies that the restriction of f to the hyperbolic compact invariant set $\bigsqcup_{j \in \mathbb{Z}_{s_i}} K_{i,j}$ is transitive.)
Definition: A homeomorphism f of a compact metric space X is *topologically mixing* (resp. *transitive*) if, for any nonempty open subsets U, V of X, one has $f^n(U) \cap V \neq \emptyset$ for all (resp. some) n large enough.

Theorem: (Smale) Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$. Assume that K is locally maximal and $f|_K$ is chain-recurrent. Then there exists a partition

$$K = \bigsqcup_{i=1}^{\ell} \bigsqcup_{j \in \mathbb{Z}_{s_i}} K_{i,j}$$

into compact subsets such that

$$f(K_{i,j}) = K_{i,j+1}, \quad \forall 1 \leq i \leq \ell, \quad \forall j \in \mathbb{Z}_{s_i}$$
Definition: A homeomorphism f of a compact metric space X is *topologically mixing* (resp. *transitive*) if, for any nonempty open subsets U, V of X, one has $f^n(U) \cap V \neq \emptyset$ for all (resp. some) n large enough.

Theorem: (Smale) Let K be a hyperbolic compact invariant set for a C^1-embedding $f : U \to M$. Assume that K is locally maximal and $f|_K$ is chain-recurrent. Then there exists a partition

$$K = \bigsqcup_{i=1}^{\ell} \bigsqcup_{j \in \mathbb{Z}_{s_i}} K_{i,j}$$

into compact subsets such that

$$f(K_{i,j}) = K_{i,j+1}, \quad \forall 1 \leq i \leq \ell, \quad \forall j \in \mathbb{Z}_{s_i}$$

and the restriction of f^{s_i} to $K_{i,j}$ is topologically mixing.
Definition: A homeomorphism \(f \) of a compact metric space \(X \) is *topologically mixing* (resp. *transitive*) if, for any nonempty open subsets \(U, V \) of \(X \), one has \(f^n(U) \cap V \neq \emptyset \) for all (resp. some) \(n \) large enough.

Theorem: (Smale) Let \(K \) be a hyperbolic compact invariant set for a \(C^1 \)-embedding \(f : U \to M \). Assume that \(K \) is locally maximal and \(f\vert_K \) is chain-recurrent. Then there exists a partition

\[
 K = \bigsqcup_{i=1}^{\ell} \bigsqcup_{j \in \mathbb{Z}_{s_i}} K_{i,j}
\]

into compact subsets such that

\[
f(K_{i,j}) = K_{i,j+1}, \quad \forall 1 \leq i \leq \ell, \quad \forall j \in \mathbb{Z}_{s_i}
\]

and the restriction of \(f^{s_i} \) to \(K_{i,j} \) is topologically mixing. (This implies that the restriction of \(f \) to the hyperbolic compact invariant set \(\bigsqcup_{j \in \mathbb{Z}_{s_i}} K_{i,j} \) is transitive.)
Definition Let $f : U \to M$ be a C^1-embedding. A basic set for f is a compact, invariant, hyperbolic, locally maximal, transitive subset K of U.

Periodic points are dense in any basic set.

Definition: A basic set K is an attractor if $K = \bigcap_{n \geq 0} f^n(W)$ for some neighborhood W of K (equivalently, $W_{u_{loc}}(x) \subset K$ for all $x \in K$), a repellor if it is an attractor for f^{-1}, and is of saddle-type if it is neither an attractor nor a repellor. Examples of basic sets are T_d (for an Anosov diffeomorphism of the torus), the solenoid (an attractor) or the horseshoe (of saddle-type).
Definition Let $f : U \to M$ be a C^1-embedding. A basic set for f is a compact, invariant, hyperbolic, locally maximal, transitive subset K of U.

Thus, in the spectral decomposition of K, one has $\ell = 1$; the integer s_1 is the period of K. Periodic points are dense in any basic set.
Definition Let $f : U \to M$ be a C^1-embedding. A basic set for f is a compact, invariant, hyperbolic, locally maximal, transitive subset K of U.

Thus, in the spectral decomposition of K, one has $\ell = 1$; the integer s_1 is the period of K.

Periodic points are dense in any basic set.
Definition Let $f : U \to M$ be a C^1-embedding. A basic set for f is a compact, invariant, hyperbolic, locally maximal, transitive subset K of U.

Thus, in the spectral decomposition of K, one has $\ell = 1$; the integer s_1 is the period of K.

Periodic points are dense in any basic set.

Definition: A basic set K is an attractor if $K = \bigcap_{n \geq 0} f^n(W)$ for some neighborhood W of K.

Definition Let \(f : U \to M \) be a \(C^1 \)-embedding. A basic set for \(f \) is a compact, invariant, hyperbolic, locally maximal, transitive subset \(K \) of \(U \).

Thus, in the spectral decomposition of \(K \), one has \(\ell = 1 \); the integer \(s_1 \) is the period of \(K \).

Periodic points are dense in any basic set.

Definition: A basic set \(K \) is an attractor if \(K = \bigcap_{n \geq 0} f^n(W) \) for some neighborhood \(W \) of \(K \) (equivalently, \(W_{loc}^u(x) \subset K \) for all \(x \in K \)),
Basic sets

Definition Let $f : U \to M$ be a C^1-embedding. A basic set for f is a compact, invariant, hyperbolic, locally maximal, transitive subset K of U.

Thus, in the spectral decomposition of K, one has $\ell = 1$; the integer s_1 is the period of K.

Periodic points are dense in any basic set.

Definition: A basic set K is an attractor if $K = \bigcap_{n \geq 0} f^n(W)$ for some neighborhood W of K (equivalently, $W^u_{loc}(x) \subset K$ for all $x \in K$), a repellor if it is an attractor for f^{-1}, and is of saddle-type if it is neither an attractor nor a repellor.
Definition Let $f : U \rightarrow M$ be a C^1-embedding. A basic set for f is a compact, invariant, hyperbolic, locally maximal, transitive subset K of U.

Thus, in the spectral decomposition of K, one has $\ell = 1$; the integer s_1 is the *period* of K.

Periodic points are dense in any basic set.

Definition: A basic set K is an *attractor* if $K = \bigcap_{n \geq 0} f^n(W)$ for some neighborhood W of K (equivalently, $W^u_{loc}(x) \subset K$ for all $x \in K$), a *repellor* if it is an attractor for f^{-1}, and is of *saddle-type* if it is neither an attractor nor a repellor.

Examples of basic sets are \mathbb{T}^d (for an Anosov diffeomorphism of the torus), the solenoid (an attractor) or the horseshoe (of saddle-type).
Definition: A C^1-diffeomorphism f of a compact connected manifold M is hyperbolic if its chain-recurrent set $R(f)$ (which is always compact and invariant) is hyperbolic.
Definition: A C^1-diffeomorphism f of a compact connected manifold M is *hyperbolic* if its chain-recurrent set $R(f)$ (which is always compact and invariant) is hyperbolic.

Proposition: Then, $R(f)$ is locally maximal and chain-recurrent (so the spectral decomposition theorem applies).
Definition: A C^1-diffeomorphism f of a compact connected manifold M is *hyperbolic* if its chain-recurrent set $R(f)$ (which is always compact and invariant) is hyperbolic.

Proposition: Then, $R(f)$ is locally maximal and chain-recurrent (so the spectral decomposition theorem applies).

Question: Is an Anosov diffeomorphism always chain-recurrent?
Definition: A C^1-diffeomorphism f of a compact connected manifold M is *hyperbolic* if its chain-recurrent set $R(f)$ (which is always compact and invariant) is hyperbolic.

Proposition: Then, $R(f)$ is locally maximal and chain-recurrent (so the spectral decomposition theorem applies).

Question: Is an Anosov diffeomorphism always chain-recurrent?

Let f be hyperbolic, and

$$R(f) = \bigsqcup_{\alpha} R_{\alpha}$$

be the decomposition in basic sets given by the spectral decomposition theorem.
There are associated partitions

\[M = \bigsqcup_{\alpha} W^s(R_\alpha) = \bigsqcup_{\alpha} W^u(R_\alpha) \]

where

\[W^s(R_\alpha) \colonequals \{ y \in M, \lim_{n \to +\infty} d(f^n(y), R_\alpha) = \bigsqcup_{x \in R_\alpha} W^s(x) \} \]

and similarly for \(W^u(R_\alpha) \).

The relation \(R_\alpha \sqsubseteq R_\beta \iff W^u(R_\alpha) \cap W^s(R_\beta) \neq \emptyset \) has no cycle of length > 1, hence can be minimally completed as a partial order on the set of basic sets. The attractors (resp. repellors) are the minimal (resp. maximal) elements of this partial order.
There are associated partitions

\[M = \bigsqcup_{\alpha} W^s(R_{\alpha}) = \bigsqcup_{\alpha} W^u(R_{\alpha}) \]

where

\[W^s(R_{\alpha}) := \{ y \in M, \lim_{n \to +\infty} d(f^n(y), R_{\alpha}) = \bigcup_{x \in R_{\alpha}} W^s(x) \} \]

and similarly for \(W^u(R_{\alpha}) \).
There are associated partitions

\[M = \bigsqcup_{\alpha} W^s(R_\alpha) = \bigsqcup_{\alpha} W^u(R_\alpha) \]

where

\[W^s(R_\alpha) := \{ y \in M, \quad \lim_{n \to +\infty} d(f^n(y), R_\alpha) = \bigcup_{x \in R_\alpha} W^s(x) \] and similarly for \(W^u(R_\alpha) \). The relation

\[R_\alpha \triangleright R_\beta \iff W^u(R_\alpha) \cap W^s(R_\beta) \neq \emptyset \]

has no cycle of length \(> 1 \), hence can be minimally completed as a partial order on the set of basic sets.
There are associated partitions

$$M = \bigsqcup_{\alpha} W^s(R_\alpha) = \bigsqcup_{\alpha} W^u(R_\alpha)$$

where

$$W^s(R_\alpha) := \{y \in M, \lim_{n \to +\infty} d(f^n(y), R_\alpha) = \bigcup_{x \in R_\alpha} W^s(x)$$

and similarly for $W^u(R_\alpha)$. The relation

$$R_\alpha \triangleright R_\beta \iff W^u(R_\alpha) \cap W^s(R_\beta) \neq \emptyset$$

has no cycle of length > 1, hence can be minimally completed as a partial order on the set of basic sets. The attractors (resp. repellors) are the minimal (resp. maximal) elements of this partial order.
Symbolic dynamics: the shift map

Let \mathcal{A} be a finite alphabet. The homeomorphism σ of $\mathcal{A}^\mathbb{Z}$ defined for $\underline{\theta} = (\theta_n)_{n \in \mathbb{Z}}$ by
\[(\sigma(\underline{\theta}))_n = \theta_{n+1} \]
is called the \textit{(full, bilateral) shift map} on \mathcal{A}.
Symbolic dynamics: the shift map

Let A be a finite alphabet. The homeomorphism σ of $A^\mathbb{Z}$ defined for $\theta = (\theta_n)_{n \in \mathbb{Z}}$ by

$$(\sigma(\theta))_n = \theta_{n+1}$$

is called the \textit{(full, bilateral) shift map} on A.

The same formula defines a continuous surjective map σ_+ from $A^{\mathbb{Z}^+}$ to itself, called the unilateral full shift on A.

Jean-Christophe Yoccoz
A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Let \mathcal{A} be a finite alphabet. The homeomorphism σ of $\mathcal{A}^\mathbb{Z}$ defined for $\underline{\theta} = (\theta_n)_{n \in \mathbb{Z}}$ by

$$(\sigma(\underline{\theta}))_n = \theta_{n+1}$$

is called the (full, bilateral) shift map on \mathcal{A}.

The same formula defines a continuous surjective map σ_+ from $\mathcal{A}^{\mathbb{Z}^+}$ to itself, called the unilateral full shift on \mathcal{A}.

The restriction of σ (or σ_+) to a closed invariant subset is called a subshift.
Let \mathcal{B} be a subset of $A \times A$. The subset

$$
\Sigma_{\mathcal{B}} := \{ \theta \in A^\mathbb{Z}, (\theta_n, \theta_{n+1}) \in \mathcal{B}, \forall n \in \mathbb{Z} \}
$$

is closed and invariant under σ; the restriction of σ to $\Sigma_{\mathcal{B}}$ is called the \textit{subshift of finite type} defined by \mathcal{B}.
Subshifts of finite type

Let \mathcal{B} be a subset of $A \times A$. The subset

$$\Sigma_{\mathcal{B}} := \{ \theta \in A^\mathbb{Z}, (\theta_n, \theta_{n+1}) \in \mathcal{B}, \forall n \in \mathbb{Z} \}$$

is closed and invariant under σ; the restriction of σ to $\Sigma_{\mathcal{B}}$ is called the subshift of finite type defined by \mathcal{B}.

One defines similarly $\Sigma_{\mathcal{B}}^+ \subset A^{\mathbb{Z}+}$.
Let B be a subset of $A \times A$. The subset

$$\Sigma_B := \{ \theta \in A^\mathbb{Z}, (\theta_n, \theta_{n+1}) \in B, \forall n \in \mathbb{Z} \}$$

is closed and invariant under σ; the restriction of σ to Σ_B is called the *subshift of finite type* defined by B.

One defines similarly $\Sigma^+_B \subset A^{\mathbb{Z}+}$.

Example: Let $d \geq 1$ and $A' := A^d$. The map

$$i = i_d : A^\mathbb{Z} \rightarrow (A')^\mathbb{Z}$$

defined by

$$(i(\theta))_n = (\theta_n, \ldots, \theta_{n+d-1}) \in A'$$

is a conjugacy between the full shift on A and a subshift of finite type on A'.
Let \mathcal{B} be a subset of $A \times A$. The subset

$$\Sigma_{\mathcal{B}} := \{ \theta \in A^\mathbb{Z}, (\theta_n, \theta_{n+1}) \in \mathcal{B}, \forall n \in \mathbb{Z} \}$$

is closed and invariant under σ; the restriction of σ to $\Sigma_{\mathcal{B}}$ is called the subshift of finite type defined by \mathcal{B}.

One defines similarly $\Sigma_{\mathcal{B}}^+ \subset A^{\mathbb{Z}+}$.

Example: Let $d \geq 1$ and $A' := A^d$. The map

$i = i_d : A^\mathbb{Z} \to (A')^\mathbb{Z}$ defined by

$$(i(\theta))_n = (\theta_n, \ldots, \theta_{n+d-1}) \in A'$$

is a conjugacy between the full shift on A and a subshift of finite type on A'.
Proposition: Let Σ be a closed σ-invariant subset of $A^\mathbb{Z}$. The following are equivalent:

1. Σ is locally maximal;
A characterization of subshifts of finite type

Proposition: Let Σ be a closed σ-invariant subset of $A^\mathbb{Z}$. The following are equivalent:

1. Σ is locally maximal;
2. there exists $d \geq 1$ such that $i_d(\Sigma)$ is a subshift of finite type of $(A^d)^\mathbb{Z}$.
Transitivity and topological mixing for subshifts of finite type

The full shift σ is a topologically mixing (hence transitive) homeomorphism of $A^\mathbb{Z}$.

Let $B \subset A \times A$. When is the subshift of finite type associated to B transitive, topologically mixing? To formulate the answer, we introduce the graph Γ_B whose set of vertices is A and which has one arrow from a to a' for each $(a, a') \in B$. We also introduce the matrix A_B indexed by $A \times A$ defined by:

$$A_B^a, a' = \begin{cases} 1 & \text{if } (a, a') \in B \\ 0 & \text{otherwise} \end{cases}$$

For $m \geq 0$, the entry in position (a, a') in A_B^m is the number of oriented paths of length m from a to a' in Γ_B.

Jean-Christophe Yoccoz

A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Transitivity and topological mixing for subshifts of finite type

The full shift σ is a topologically mixing (hence transitive) homeomorphism of $A^\mathbb{Z}$.

Let $B \subset A \times A$. When is the subshift of finite type associated to B transitive?
The full shift σ is a topologically mixing (hence transitive) homeomorphism of $A^\mathbb{Z}$.

Let $B \subset A \times A$. When is the subshift of finite type associated to B transitive? topologically mixing?
The full shift σ is a topologically mixing (hence transitive) homeomorphism of $A^\mathbb{Z}$.

Let $B \subset A \times A$. When is the subshift of finite type associated to B transitive? topologically mixing?

To formulate the answer, we introduce the graph Γ_B whose set of vertices is A and which has one arrow from a to a' for each $(a, a') \in B$.

$$A_{a, a'} = \begin{cases}
1 & \text{if } (a, a') \in B \\
0 & \text{otherwise}
\end{cases}$$

For $m \geq 0$, the entry in position (a, a') in $A^m B$ is the number of oriented paths of length m from a to a' in Γ_B.

Jean-Christophe Yoccoz

A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Transitivity and topological mixing for subshifts of finite type

The full shift σ is a topologically mixing (hence transitive) homeomorphism of $A^\mathbb{Z}$.
Let $B \subset A \times A$. When is the subshift of finite type associated to B transitive? topologically mixing?
To formulate the answer, we introduce the graph Γ_B whose set of vertices is A and which has one arrow from a to a' for each $(a, a') \in B$. We also introduce the matrix $A = A_B$ indexed by $A \times A$ defined by

$$A_{a, a'} = \begin{cases}
1 & \text{if } (a, a') \in B \\
0 & \text{otherwise}
\end{cases}$$
The full shift σ is a topologically mixing (hence transitive) homeomorphism of $A^\mathbb{Z}$.

Let $B \subset A \times A$. When is the subshift of finite type associated to B transitive? topologically mixing?

To formulate the answer, we introduce the graph Γ_B whose set of vertices is A and which has one arrow from a to a' for each $(a, a') \in B$. We also introduce the matrix $A = A_B$ indexed by $A \times A$ defined by

$$A_{a, a'} = \begin{cases} 1 & \text{if } (a, a') \in B \\ 0 & \text{otherwise} \end{cases}$$

For $m \geq 0$, the entry in position (a, a') in A_B^m is the number of oriented paths of length m from a to a' in Γ_B.

Jean-Christophe Yoccoz

A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Assume that, for every vertex a of Γ_B, there exists an arrow from a and an arrow to a (otherwise we can remove a from A).
Assume that, for every vertex a of Γ_B, there exists an arrow from a and an arrow to a (otherwise we can remove a from A).

Proposition: The subshift defined by B is transitive iff the graph Γ_B is strongly connected: for any $a, a' \in A$, there exists an oriented path from a to a'.
Assume that, for every vertex a of Γ_B, there exists an arrow from a and an arrow to a (otherwise we can remove a from A).

Proposition: The subshift defined by B is transitive iff the graph Γ_B is strongly connected: for any $a, a' \in A$, there exists an oriented path from a to a'.

Proposition: Assume that the subshift defined by B is transitive. Then, there exists an integer $s \geq 1$ (the *period*) and a partition

$$\mathcal{A} = \bigsqcup_{i \in \mathbb{Z}_s} \mathcal{A}_i$$

Jean-Christophe Yoccoz

A survey of chaotic dynamics (I): Uniformly Hyperbolic dynamics
Assume that, for every vertex a of Γ_B, there exists an arrow from a and an arrow to a (otherwise we can remove a from A).

Proposition: The subshift defined by B is transitive iff the graph Γ_B is strongly connected: for any $a, a' \in A$, there exists an oriented path from a to a'.

Proposition: Assume that the subshift defined by B is transitive. Then, there exists an integer $s \geq 1$ (the period) and a partition

$$A = \bigsqcup_{i \in \mathbb{Z}_s} A_i$$

such that, setting

$$\Sigma_i = \{ \theta \in \Sigma_B, \, \theta_0 \in A_i \},$$
Assume that, for every vertex \(a \) of \(\Gamma_B \), there exists an arrow from \(a \) and an arrow to \(a \) (otherwise we can remove \(a \) from \(A \)).

Proposition: The subshift defined by \(B \) is transitive iff the graph \(\Gamma_B \) is strongly connected: for any \(a, a' \in A \), there exists an oriented path from \(a \) to \(a' \).

Proposition: Assume that the subshift defined by \(B \) is transitive. Then, there exists an integer \(s \geq 1 \) (the *period*) and a partition

\[
A = \bigsqcup_{i \in \mathbb{Z}_s} A_i
\]

such that, setting

\[
\Sigma_i = \{ \theta \in \Sigma_B, \theta_0 \in A_i \},
\]

one has \(\sigma(A_i) = A_{i+1} \) and \(\sigma^s |_{\Sigma_i} \) is topologically mixing.
Assume that, for every vertex a of Γ_B, there exists an arrow from a and an arrow to a (otherwise we can remove a from A).

Proposition: The subshift defined by B is transitive iff the graph Γ_B is strongly connected: for any $a, a' \in A$, there exists an oriented path from a to a'.

Proposition: Assume that the subshift defined by B is transitive. Then, there exists an integer $s \geq 1$ (the *period*) and a partition

$$A = \bigsqcup_{i \in \mathbb{Z}_s} A_i$$

such that, setting

$$\Sigma_i = \{ \theta \in \Sigma_B, \, \theta_0 \in A_i \},$$

one has $\sigma(A_i) = A_{i+1}$ and $\sigma_s|_{\Sigma_i}$ is topologically mixing. The period is the g.c.d. of the lengths of the loops in Γ_B.
Proposition: Let K be a basic set for a C^1-embedding $f : U \to M$.

Idea of proof: As K is totally discontinuous, one can find a finite partition $K = \bigsqcup_{\alpha \in A} K_\alpha$ into clopen subsets with arbitrary small diameter. For $x \in K$, define $h(x) = \theta \in A$ by $	heta_n = \alpha \iff f^n(x) \in K_\alpha$. The map h is continuous, injective (by expansivity), and satisfies $h \circ f = \sigma \circ h$. It is therefore a conjugacy from $f|_K$ to some subshift. As K is locally maximal, the same is true for $h(K)$, which is therefore a subshift of finite type.

\begin{center}
Jean-Christophe Yoccoz
\end{center}
Proposition: Let K be a basic set for a C^1-embedding $f : U \to M$. Assume that K is infinite and totally discontinuous (this implies that K is of saddle type).
Proposition: Let K be a basic set for a C^1-embedding $f: U \to M$. Assume that K is infinite and totally discontinuous (this implies that K is of saddle type). Then there exists a topological conjugacy $h: K \to \Sigma_B$ from $f_{|K}$ to some transitive subshift of finite type.

Idea of proof: As K is totally discontinuous, one can find a finite partition $K = \bigsqcup_{\alpha \in A} K_\alpha$ into clopen subsets with arbitrary small diameter. For $x \in K$, define $h(x) = \theta \in A$ by $\theta_n = \alpha \iff f^n(x) \in K_\alpha$. The map h is continuous, injective (by expansivity), and satisfies $h \circ f = \sigma \circ h$. It is therefore a conjugacy from $f_{|K}$ to some subshift. As K is locally maximal, the same is true for $h(K)$, which is therefore a subshift of finite type. □
Proposition: Let K be a basic set for a C^1-embedding $f : U \to M$. Assume that K is infinite and totally discontinuous (this implies that K is of saddle type). Then there exists a topological conjugacy $h : K \to \Sigma_B$ from $f|_K$ to some transitive subshift of finite type.

Idea of proof: As K is totally discontinuous, one can find a finite partition

$$K = \bigsqcup_{\alpha \in A} K_\alpha$$

into clopen subsets with arbitrary small diameter.
Proposition: Let K be a basic set for a C^1-embedding $f : U \to M$. Assume that K is infinite and totally discontinuous (this implies that K is of saddle type). Then there exists a topological conjugacy $h : K \to \Sigma_B$ from $f|_K$ to some transitive subshift of finite type.

Idea of proof: As K is totally discontinuous, one can find a finite partition

$$K = \bigsqcup_{\alpha \in \mathcal{A}} K_\alpha$$

into clopen subsets with arbitrary small diameter. For $x \in K$, define $h(x) = \underline{\theta} \in \mathcal{A}^\mathbb{Z}$ by

$$\theta_n = \alpha \iff f^n(x) \in K_\alpha.$$
Proposition: Let K be a basic set for a C^1-embedding $f : U \to M$. Assume that K is infinite and totally discontinuous (this implies that K is of saddle type). Then there exists a topological conjugacy $h : K \to \Sigma_B$ from $f_{|K}$ to some transitive subshift of finite type.

Idea of proof: As K is totally discontinuous, one can find a finite partition

$$K = \bigsqcup_{\alpha \in \mathcal{A}} K_\alpha$$

into clopen subsets with arbitrary small diameter. For $x \in K$, define $h(x) = \theta \in \mathcal{A}^\mathbb{Z}$ by

$$\theta_n = \alpha \iff f^n(x) \in K_\alpha.$$

The map h is continuous, injective (by expansivity), and satisfies $h \circ f = \sigma \circ h$. It is therefore a conjugacy from $f_{|K}$ to some subshift.
Totaly discontinuous basic sets

Proposition: Let K be a basic set for a C^1-embedding $f : U \to M$. Assume that K is infinite and totally discontinuous (this implies that K is of saddle type). Then there exists a topological conjugacy $h : K \to \Sigma_B$ from $f|_K$ to some transitive subshift of finite type.

Idea of proof: As K is totally discontinuous, one can find a finite partition

$$K = \bigsqcup_{\alpha \in \mathcal{A}} K_\alpha$$

into clopen subsets with arbitrary small diameter. For $x \in K$, define $h(x) = \underline{\theta} \in \mathcal{A}^\mathbb{Z}$ by

$$\theta_n = \alpha \iff f^n(x) \in K_\alpha.$$

The map h is continuous, injective (by expansivity), and satisfies $h \circ f = \sigma \circ h$. It is therefore a conjugacy from $f|_K$ to some subshift. As K is locally maximal, the same is true for $h(K)$, which is therefore a subshift of finite type. □