Eng · 繁體 · 简体

 [   ] 

Prof. Tao LUO (羅濤教授)

Ph. D (Chinese Academy of Sciences)


Contact Information

Office: Y6502 Academic 1
Phone: +852 3442-8662
Fax: +852 3442-0250
Email: taoluo@cityu.edu.hk
Professor Luo received his PhD from Chinese Academy of Sciences in 1995. He held a professorship at Georgetown University before joining the City University of Hong Kong. His research interest is mainly in the analysis of nonlinear partial differential equations in fluid mechanics.

Publication Show All Publications Show Prominent Publications


  • Hao, Chengchun. & Luo, Tao. (2019). Ill-posedness of free boundary problem of the incompressible ideal MHD,. Communications in Mathematical Physics. doi:10.1007/s00220-019-03614-1
  • Luo, Tao. & Zeng, Huihui. (2016). Global Existence of Smooth Solutions and Convergence to Barenblatt Solutions for the Physical Vacuum Free Boundary Problem of Compressible Euler Equations with Damping. Comm. Pure Appl. Math. 1354 - 1396. doi:10.1002/cpa.21562
  • Luo, Tao. , Xin, Zhouping. & Zeng, Huihui. (2016). Nonlinear Asymptotic Stability of the Lane-Emden Solutions for the Viscous Gaseous Star Problem with Degenerate Density Dependent Viscosities. Comm. Math. Phys. 347/3. 657 - 702.
  • Luo, Tao. , Xin, Zhouping. & Zeng, Huihui. (2016). On Nonlinear Asymptotic Stability of The Lane-Emden Solutions for The Viscous Gaseous Star Problem. Advance in Mathematics. 291. 90 - 182. doi:10.1016/j.aim.2015.12.022
  • Federbush, Paul. , Luo, Tao. & Smoller, Joel. (2015). Existence of Magnetic Compressible Fluid Stars. Arch. Ration. Mech. Anal. 215/2. 611 - 631.
  • Hao, Chengchun. & Luo, Tao. (2014). Free Boundary Problem of Incompressible Inviscid Magnetohydrodynamic Flows. Arch. Ration. Mech. & Anal. .
  • Luo, Tao. , XIn, Zhouping. & Zeng, Huihui. (2014). Well-Posedness for the Motion of Physical Vacuum of the Three-dimensional Compressible Euler Equations with or without Self-Gravitation. Arch. Ration. Mech. Anal. 213/2. 763 - 831.
  • Luo, Tao. , Rauch, Jeffrey. , Xie, Chunjing. & Xin, Zhouping. (2011). Stability of Transonic Shock Solutions for One-Dimensional Euler-Poisson Equations. Arch. Rational Meach. Anal. 202/3. 787 - 827.
  • Luo, Tao. & Smoller, Joel. (2009). Existence and Nonlinear Stability of Rotating Star Solutions of the Compressible Euler- Poisson Equations. Arch. Ration. Mech. & Anal. 191/3. 447 - 496.
  • Luo, Tao. & Smoller, Joel. (2008). Nonlinear Dynamical Stability of Newtonian Rotating and Non-rotating White Dwarfs and Rotating Supermassive Stars. Commun. Math. Physics. 425 - 457.
  • Luo, Tao. & Yang, Tong. (2004). Global structure and asymptotic behavior of weak solutions to flood wave equations. J. Diff. Eqns.
  • Luo, Tao. & Smoller, Joel. (2004). Rotating fluids with self-gravitation in bounded domains. Arch. Ration. Mech. & Anal.
  • Colombini, F. , Luo, T. & Rauch, J. (2003). Uniqueness and Nonuniqueness for Nonsmooth Divergence Free Transport,. Seminaire Equations aux Derivees Partielles, Ecole Polytechnique.
  • Luo, T. , Xin, Z. & Yang, T. (2000). Interface behavior of compressible Navier-Stokes equations with vacuum. SIAM, J. Math. Anal. .
  • Hsiao, L. & Luo, T. (1998). Nonlinear diffusive phenomena of entropy weak solutions for a system of quasilinear hyperbolic conservation laws with damping. Quart. Appl. Math. .
  • Luo, Tao. (1997). Asymptotic stability of planar rarefaction waves for the relaxation approximation of conservation laws in several dimensions. J. Diff. Eqns.
  • Luo, T. & Xin, Z. (1997). Nonlinear stability of shock fronts for a relaxation system in several space dimensions. J. Diff. Eqns.
  • Hsiao, L. & Luo, T. (1996). Nonlinear diffusive phenomena of solutions for the system of compressible adiabatic flow through porous media. J. Differential Equations. J. Diff. Eqns. .

Book Chapter

  • Luo, T. & Smoller, J. (2012). Stellar Structure, Dynamics and Stability. Hyperbolic problems & theory, numerics and applications Ser. Contemp. Appl. Math. .

Last update date : 03 Dec 2019