Properties of zeros of pseudo-ultraspherical polynomials

Kathy Driver
University of Cape Town, South Africa
Email: kathy.driver@uct.ac.za
The pseudo-ultraspherical polynomial of degree n can be defined by $\mathcal{C}_{n}^{(\lambda)}(x)=$ $(-i)^{n} C_{n}^{(\lambda)}(i x)$ where $C_{n}^{(\lambda)}(x)$ is the ultraspherical polynomial. It is known that when $\lambda<-n$, the finite set $\left\{\mathcal{C}_{n}^{(\lambda)}(x), n=0,1, \ldots,-\lfloor\lambda+1\rfloor\right\}$ is orthogonal on $(-\infty, \infty)$ with respect to the weight function $\left(1+x^{2}\right)^{\lambda-\frac{1}{2}}$ and when $\lambda<1-n$, the polynomial $\mathcal{C}_{n}^{(\lambda)}(x)$ has exclusively real and simple zeros. We discuss properties of the zeros of these polynomials including bounds, numbers of real zeros, monotonicity and interlacing properties.

