City University of Hong Kong Course Syllabus

offered by Department of Physics with effect from Semester A 2022/23

Part I Course Overview

Course Title:	Introduction to Quantum Optics
Course Code:	PHY6255
Course Duration:	One semester
Credit Units:	3 credits
Level:	P6
Medium of Instruction:	English
Medium of Assessment:	English
Prerequisites: (Course Code and Title)	(1) PHY3205 Electrodynamics or equivalent AND(2) PHY3251 Quantum Mechanics or equivalent
Precursors: (Course Code and Title)	
Equivalent Courses : (Course Code and Title)	
Exclusive Courses: (Course Code and Title)	PHY8255 Introduction to Quantum Optics

Part II Course Details

1. Abstract

(A 150-word description about the course)

This is a graduate course on quantum optics, aiming to equipping students with advanced knowledge of quantum aspects of light and light-matter interactions that are necessary to conduct research and to understand literatures. The course will start with classical theory of electromagnetic fields and make a transition to quantum theory. It then discusses classical and quantum description of optical systems and introduces two basic techniques for quantum measurement of light. Second half deals with interaction between optical fields and between light and matters. It will cover nonlinear optical interactions for the generation of quantum states of light, the semiclassical and quantum theories of atom-field interaction, open quantum systems. Afterward students will learn about Casmir effect, Purcell effect, polaritons, and other advanced applications.

2. Course Intended Learning Outcomes (CILOs)

(CILOs state what the student is expected to be able to do at the end of the course according to a given standard of performance.)

No.	CILOs	Weighting* (if	Discov curricu		
		applicable)	learnin	_	
			(please		where
			approp	riate)	1
			AI	A2	A3
1.	Recognizing and use appropriately important technical				
	terms and definitions in quantum descriptions of light		✓	√	
	fields and in interaction between light and matters				
2.	Use appropriate mathematical notations and apply in				
	concise form the laws of quantum optics to understand		\checkmark	✓	
	modern physics problems				
3.	Understand measurement techniques of quantum				
	optics and apply them to the study of modern physics		✓	✓	
	problems				
4.	Solve real and hypothetical problems in quantum				
	physics and optics by identifying the underlying		✓	✓	✓
	physics and analysing the problems				
* If we	eighting is assigned to CILOs, they should add up to 100%.	100%			

A1: Attitude

Develop an attitude of discovery/innovation/creativity, as demonstrated by students possessing a strong sense of curiosity, asking questions actively, challenging assumptions or engaging in inquiry together with teachers.

A2: Ability

Develop the ability/skill needed to discover/innovate/create, as demonstrated by students possessing critical thinking skills to assess ideas, acquiring research skills, synthesizing knowledge across disciplines or applying academic knowledge to self-life problems.

A3: Accomplishments

Demonstrate accomplishment of discovery/innovation/creativity through producing /constructing creative works/new artefacts, effective solutions to real-life problems or new processes.

3. Teaching and Learning Activities (TLAs)

(TLAs designed to facilitate students' achievement of the CILOs.)

TLA	Brief Description	CIL	CILO No.		Hours/week		
		1	2	3	4		(if applicable)
Lectures/Student	Explain key concepts, build	✓	✓	√	✓		3 hours/week
Centred	mathematic foundation and						
Activities	analytical skills, provide examples						
	and solutions of advanced problems						
	in quantum optics						

4. Assessment Tasks/Activities (ATs)

(ATs are designed to assess how well the students achieve the CILOs.)

Assessment Tasks/Activities	CILO No.				Weighting*	Remarks		
	1	2	3	4				
Continuous Assessment: 60%								
Assignments	✓	✓	✓	✓			30%	
Test	✓	✓	✓	✓			30%	
Examination: 40% (duration: 2 hours)								

^{*} The weightings should add up to 100%.

100%

5. Assessment Rubrics

(Grading of student achievements is based on student performance in assessment tasks/activities with the following rubrics.)

Applicable to students admitted in Semester A 2022/23 and thereafter

Assessment Task	Criterion	Excellent	Good	Marginal	Failure
		(A+, A, A-)	(B+, B)	(B-, C+, C)	(F)
1. Assignment	Capable to show a good understanding of the	high	significant	moderate	Not given enough
	taught				efforts or unable to
	materials from solving the given problems.				grasp the basic concept.
2. Test	Ability to solve common quantum optics problems.	high	significant	moderate	Not given enough
					efforts or unable to
					grasp the basic concept.
3. Examination	Ability to grasp the concept of the taught materials	high	significant	moderate	Not given enough
	and to solve common quantum optics problems.				efforts or unable to
					grasp the basic concept.

Applicable to students admitted before Semester A 2022/23

Assessment Task	Criterion	Excellent	Good	Fair	Marginal	Failure
1. Assignment	Capable to show a good	(A+, A, A-) high	(B+, B, B-) significant	(C+, C, C-) moderate	(D) basic	Not given enough
	understanding of the taught					efforts or unable to
	materials from solving the given					grasp the basic concept.
	problems.					
2. Test	Ability to solve common quantum	high	significant	moderate	basic	Not given enough
	optics problems.					efforts or unable to
						grasp the basic concept.
3. Examination	Ability to grasp the concept of the	high	significant	moderate	basic	Not given enough
	taught materials and to solve					efforts or unable to
	common quantum optics problems.					grasp the basic concept.

Part III Other Information (more details can be provided separately in the teaching plan)

1. Keyword Syllabus

- 1.1 Classical wave description of optical fields
- 1.2 Maxwell equations for electromagnetic fields first quantization
- 1.3 Second quantization for quantum theory of light
- 1.4 Quantum states for optical fields squeezed states, entangled states, and more Glauber-Sudarshan P-representation
- 1.5 Photon counting for discrete variables multi-photon interference
- 1.6 Homodyne detection for continuous variables quantum noise
- 1.7 Nonlinear interaction for generation of quantum states
- 1.8 Atom-light interaction, Gauge invariance
- 1.9 Liouville equation for density matrix
- 1.10 Canonical transformation
- 1.11 Open quantum systems
- 1.12 Macroscopic quantum phenomena

2. Reading List

2.1 Compulsory Readings

(Compulsory readings can include books, book chapters, or journal/magazine articles. There are also collections of e-books, e-journals available from the CityU Library.)

2.2 Additional Readings

(Additional references for students to learn to expand their knowledge about the subject.)

(11000	though references for students to tearn to expand their knowledge dood the subject.)
1.	Zheyu Jeff Ou, Quantum Optics for Experimentalists, 1st Edition (WSPC, 2017)
2	R. Loudon, <i>Quantum Theory of Light</i> , 3 rd Edition (Oxford University Press, 2000)
3.	Marlan O. Scully & M. Suhail Zubairy, <i>Quantum Optics</i> , 1 st Edition (Cambridge University
	Press, 1997)
4.	D. F. Walls & Gerard J. Milburn, <i>Quantum Optics</i> , 2 nd Edition (Springer, 2007)
5.	Heinz P. Breuer & Francesco Petruccione, The Theory of Open Quantum Systems (Oxford
	University Press, 2007)
6.	Girish S. Agarwal, <i>Quantum Optics</i> , 1 st Edition (Cambridge University Press, 2012)
7.	William H. Louisell, Quantum Statistical Properties of Radiation (Wiley-VCH, 1990)