14th International Conference on
Plasma Based Ion Implantation & Deposition

PBII&D 2017

New World Shanghai Hotel

October 17-20, 2017, Shanghai, China

Program

Organized by
Shanghai Institute of Ceramics, Chinese Academy of Sciences (SIC CAS)
Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences (SIMIT CAS)
14th PBII&D Committees

Organizer
Shanghai Institute of Ceramics, Chinese Academy of Sciences
Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences

International Organizing Committee
P. K. Chu (Chairman) Hongkong, China
M. Bilek Australia
N. Huang China
S. Mändl Germany
A. Márquez Argentina
L. Pichon France
X. B. Tian China
M. Ueda Brazil
R. H. Wei USA

Local Organizing Committee
Xuanyong Liu (Chair) Shanghai Institute of Ceramics, CAS
Zengfeng Di (Co-Chair) Shanghai Institute of Microsystems and Information Technology, CAS
Yongfeng Mei Fudan University
Zhenghua An Fudan University
Zhongying Xue Shanghai Institute of Microsystems and Information Technology, CAS
Huiliang Cao Shanghai Institute of Ceramics, CAS
Dual-light inspired in-situ antibacterial activity of chitosan-assisted MoS₂ nanosheets

Zizhou Feng a, Xiangmei Liu a, Yanzhe Zhang a, Zhenduo Cui b, Xianjin Yang b, Kelvin W. K. Yeung d, Paul K. Chu c, Shuilin Wu a,b*

a Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China
b School of Materials Science & Engineering, Tianjin University, Tianjin 300072, China
c Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
d Department of Orthopaedics& Traumatology, Li KaShing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China

Keywords: MoS₂; Antimicrobial; Dual light irradiation; Photothermal; Photodynamic; Implants

Introduction: Increasing osteoporosis-related fractures caused by the increasing aging population and orthopedic diseases have been bringing about booming demand for artificial implant materials[1,2]. However, the surface of these artificial implants often provides an hospitable place from bacterial attachment and growth after implantation in vivo. Once bacterial biofilm forms on the surface, it has to remove these implants through second surgery because it is very difficult to treat it by antibiotics[3-5]. Herein, we for the first time to endow the implant materials (biomedical titanium implant material) with excellent antibacterial ability of through inspiring both photocatalytic and photothermal properties of CS/MoS₂ hybrid coating by short-term dual lights irradiation simultaneously.

Materials and Methods: Electrophoretic deposition was applied to introduce chitosan and MoS₂ onto titanium substrates. A scanning electron microscope (SEM; JSM6510LV, Japan) was employed to analyze the morphology of the samples. A transmission electron microscope (TEM; Tecnai G20, FEI, USA) was used to observe the microstructures of the CS/MoS₂ in the coatings. X-ray photoelectron spectroscopy (Thermo Fisher Scientific 250Xi, USA) and a Fourier transform infrared spectroscopy (FTIR, NICOLET iS10) in the range from 400 to 4000 cm⁻¹ was introduced to identify the chemical compositions of the hybrid coatings. The structural changes in the MoS₂ before and after exfoliation were elucidated by Raman spectroscopy (InVia Reflex, Renishaw) at room temperature. Ultraviolet–visible–near-infrared spectrophotometer (UV-3600, Shimadzu, Japan) was used for the absorbance measurements. E. coli and S. aureus was used to evaluate the antibacterial activity in vitro. Antibacterial assay in vivo was executed in rats.

Results and Discussion: The results demonstrated that MoS₂ nanosheets were obtained by stripping and the CS/MoS₂ was successfully grafted onto the surface of the Ti. (Figure 1). Then the good biocompatibility and excellent antimicrobial activity in vitro and vivo were evidenced inspired by dual light (660nm visible light and 808 NIR).

Conclusion: In conclusion, we have constructed dual light inspired antibacterial system based on biocompatible CS/MoS₂ nano hybrid coating in the surface of Ti, which exhibited significant photocatalytic activity and photothermal efficacy. Inspired by 660 nm VL irradiation, the sample facilitate oxygen in water transform into single linear active oxygen ¹O₂, which disrupted integrity of the bacterial cell walls. Meanwhile, 808 nm NIR induced the hyperthermia to inhibit the biological activity of bacteria. The vitro antibacterial results reveal that
being inspired by dual light acquired a good antibacterial effect in a shorter time compare to the 660 nm VL irradiation process or 808 nm NIR irradiation treatment alone. Besides, the animal experiment in vivo also proved this result and indicate the good biocompatibility which were agreement with the cytotoxicity assay in vitro. Moreover, the sample also show certain osteogenesis capability. Consequently, these results suggest that this antibacterial system has the great potential for in-situ antibacterial of medical equipment and subcutaneous tissue antimicrobial, anti-inflammatory and bone repair.

Figure 1. (a) FT-IR spectra for native MoS2, chitosan and CS/MoS2. (b) UV-vis-NIR spectrum of CS/MoS2, and a photo (Inset) of CS/MoS2 dispersion in water. (c) TEM image and the corresponding selected area electron diffraction (SAED) patterns of CS/MoS2. The scale bar is 50nm. (d) XPS survey plot of Ti + APTMS and Ti + CS/MoS2.

References:

Corresponding:
Email: shuilin.wu@gmail.com