Preparation of layered double hydroxides using boron mud and red mud industrial wastes and adsorption mechanism to phosphate

Pan Hu1, Yihe Zhang1,2, Fengzhu Lv1, Wangshu Tong1, Hao Xin1, Zilin Meng1, Xinke Wang1 & Paul K. Chu2

1Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China and 2Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong, China

Abstract

Phosphate removal was important for wastewater treatment, and adsorption was an efficient treatment process. In this study, the layered double hydroxide adsorbent (BR-LDH), which was prepared under alkali conditions using industrial residues boron mud and red mud, was used to adsorb the phosphate. The prepared BR-LDH was characterised by X-ray diffraction, Scanning electron microscopy, Energy-dispersive X-ray spectroscopy, and Thermo-gravimetric-differential thermal analysis. Adsorption experiments were carried out as a function of dosage, contact time, temperature and initial pH of phosphate solution. The removal ratio of phosphate onto OBR-LDH reached 93%. The adsorption data showed a good compliance with the pseudo-second-order kinetic model. In addition, the mineral composition, the functional groups, the valence of elements and zeta potentials of OBR-LDH before and after adsorption were used to analyse the adsorption mechanism. The result of real wastewater suggested that OBR-LDH was excellent adsorbent for phosphorus removal from actual wastewater.

Keywords
adsorption; boron mud; LDH; phosphate; red mud.

Correspondence
Yihe Zhang, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China. Email: zyh@cugb.edu.cn
Fengzhu Lv, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China. Email: lfz619@cugb.edu.cn
doi:10.1111/wej.12212

Introduction

Phosphorus is widely used in agriculture and industry spurs the growth of photosynthetic algae and cyanobacteria (Delauney et al. 2011). Hence, excessive use of phosphorus poses many problems, notably eutrophication. When the concentration of phosphate in lakes or sea is over 0.03 mg/L, red tide occurs (Nijboer & Verdonschot 2004). Eutrophication leads to fish death and deterioration of habitats resulting in loss of plant and animal species (Håkanson et al. 2007). Therefore, wastewater must undergo treatment before discharging into the environment. Phosphates are mainly produced in household and industrial sewage because of the use of organic detergents. The typical municipal wastewater in the United States has a biochemical oxygen demand (BOD) for 5 days of 250 mg/L, chemical oxygen demand (COD) of 500 mg/L, and total phosphate of 12 mg/L. In Japan, the general wastewater standards for phosphate and nitrogen are 120 and 16 mg/L, respectively. In China, the urban sewage treatment standards for pollutant discharge secondary have a BOD for 5 days of 20 mg/L, COD of 60 mg/L, and total phosphate of 1.0 mg/L (Deng et al. 2014). In fact, the Chinese emissions standards for wastewater are stricter, especially for phosphates.

At present, physical, chemical and biological methods are used to remove phosphates (Ozcar 2003; Peleka & Deliyanni 2009). Chemical precipitation is the original and effective method for removing high concentration of phosphate, but suffers from variations in the effluent quality/quantity and sophisticated control systems are also required (Tillotson 2006). In comparison, biological removal methods are generally quite expensive and require complex aerobic effluent cycling for the complete treatment (Hesselmann...
et al. 2000). In fact, adsorption is superior to the above techniques for removal of pollutants from aqueous solutions in terms of flexibility, design simplicity, operation flexibility and insensitivity to toxic pollutants while it also does not produce many harmful substances (Mustafa et al. 2006; Onyango et al. 2009; Roques et al. 1991).

Many kinds of adsorbents were investigated to remove phosphates, for instance, slag (Drizo et al. 2004), calcite (Karageorgiou et al. 2007), dolomite (Roques et al. 1991), banana stems (Noeline et al. 2005), layered double hydroxides (LDHs) (Seida & Nakano 2002; Das et al. 2006; Yang et al. 2014). LDH, also known as hydrotalcite-like materials or anionic clays, had received much attention as an effective adsorbent. Its general formula is $[\text{M}^{II}_{x-1}\text{M}^{III}_x \text{(OH)}_2]^x[A^{x-n}(\text{OH})_n]^{x-n}(\text{OH})_2]^{-n}$, where $\text{M}^{II} = \text{Zn, Mg, Co, Ni, etc.,}$ $\text{M}^{III} = \text{Al, Fe, Cr, Ga, etc.,}$ $A^{x-n} = \text{CO}_3^{2-}, \text{NO}_3^-, \text{Cl}^-, \text{SO}_4^{2-}$, etc. These are layered materials containing positively charged metal hydroxide sheets compensated by a large number of exchangeable charge-balancing anions and water molecules present in the interlayer space (Auerbach et al. 2004). Owing to the presence of large interlayer spaces and a huge number of exchangeable anions, LDH is very promising with respect to phosphorous uptake from wastewater.

Many literatures had reported that LDH could adsorb the heavy metals such as Pb, Cd, Cu and so on (Zhao et al. 2014; Huang et al. 2015). Meanwhile, there were also many literatures focusing on organics wastewater removal by LDH (Gök et al. 2014; Wang et al. 2015; Li et al. 2016; Zhang et al. 2016; Zhao et al. 2016). In addition, the few literatures which LDH treated the microorganisms in wastewater had been reported (Morris et al. 2008; Liu et al. 2013). However, the literatures focusing on real wastewater removal by LDH also had rarely been reported. Khitous et al. studied that removal of phosphate from industrial wastewater using uncalcined MgAl-NO₃ LDH and result showed the sorption capacity of 64.1002 mg/g (Khitous et al. 2015). In addition, phosphate ions were removed from aqueous solution using synthetic zeolite (Maurice et al. 2007).

In this study, we prepared RB-LDH by red mud and boron mud, which were industrial solid waste residue and cheaper than expensive chemical reagents. Red mud was a kind of solid waste residue with high pH (10–13) from the aluminum industry formed during bauxite. For every ton of alumina produced, approximately one to two tons (dry weight) of bauxite residues were generated. The corrosive nature of the red mud and its enormous quantities (90 million tons yearly worldwide) caused significant ecological problems and considerable negative environmental effects (Guo et al. 2014; Wang et al. 2014a,b). Boron mud was produced during the production of boric acid or borax. During the enrichment process of boron ores, a large quantity of boron mud was discharged and caused environmental contamination. Through calcining active red mud and boron mud, many minerals could be decomposed to active metal oxides. The active divalent and trivalent metal oxides could be used as the raw materials of RB-LDH. At present, the literatures about preparation of LDH using industrial solid wastes had seldom been reported. In the study, the prepared BR-LDH removed the phosphate from simulative wastewater and the removal ratio of phosphate could reached 93%.

Experimental details

Materials

The red mud was provided by Shandong Weiqiao Aluminum and Electricity Co., Ltd. (Shandong, China). Boron mud was supplied by Dandong Yilong Mining Co., Ltd. in Liaoning, China. The other reagents in this study were analytical grade.

Preparation of absorbent

A certain quantity of boron mud, red mud, and distilled water were added in a beaker and mixed thoroughly. The mixture was dried at 120°C and calcined at 600°C for 3 h. The sample was designated BR-600.

Sixty grams of BR-600 were added to a NaOH solution with a certain concentration to react at 30°C for 6 h. After aging for 24 h at room temperature, the sample was filtered and washed till the pH value of filtrate reached 7. Then, it was dried at 80°C and milled to form BR-LDH powders.

In order to determine the optimal preparation conditions for BR-LDH, the mass ratio of boron mud to red mud and the concentration of NaOH solution were studied in details.

Adsorption experiments

To assess phosphate adsorption, a stock solution was prepared with KH₂PO₄. The adsorption experiments were carried out in a 100 mL flask containing 50 mL of 100 mg/L KH₂PO₄ solution. The bottles were shaken in a digital water bath oscillator at 150 rpm. The influence of the contact time, temperature, and pH on adsorption were studied systematically. The initial pH value of the phosphate solution was adjusted by addition 0.1 mol/L of HNO₃ or 0.1 mol/L of NaOH. The concentration of phosphate was detected by the molybdate blue spectrophotometric method (Yan et al. 2010). The phosphate adsorption capacity q_e (mg/g) (1) and removal ratio R (%) (2) were derived from the following relationships:

$$ q_e = \frac{(C_0 - C_e)V}{m} \tag{1} $$

$$ R = \frac{C_0 - C_e}{C_0} \times 100\% \tag{2} $$

where C_0 and C_e are the initial and equilibrium concentration of phosphate in the solution (mg/L). q_e is the equilibrium capacity of phosphate in the solution (mg/L). q_e is the equilibrium capacity of phosphate in the solution (mg/L).
adsorption capacity (mg/g). \(m \) is the adsorbent dry weight (g) and \(V \) is the suspension volume (L).

In order to apply BR-LDH in the real wastewater, we collected real wastewater from Qinghe sewage treatment plant in Beijing, China. The quality parameters of the real wastewater were given in Table 1.

Characterisation

X-ray diffraction (XRD, Rigaku D/max-rA), Scanning electron microscopy (SEM, JSM-6301F), Thermo-gravimetric differential thermal analysis (TG, Netzsch TG-209C), Fourier transform infrared spectroscopy (FT-IR, PerkinElmer Spectrum 100) and Zetasizer analysis (Malvern Instruments Ltd., UK) were used to characterize the components, structure, morphology and charges of BR-LDH before and after adsorption.

Results and discussion

Analysis of raw materials

Boron mud and red mud

The mineral constituents and chemical composition of boron mud and red mud determined by XRD and XRF were shown in Table 2. The main constituents of boron mud were forsterite \((\text{Mg}_2\text{SiO}_4)\), muscovite \((\text{KAl}_2\text{Si}_3\text{O}_10\text{(OH)}_2)\) and huntite \((\text{Mg}_{0.92}\text{Ca}_{0.08}\text{CO}_3\cdot\text{C}_1\cdot\text{H}_2\text{O})\). Red mud contained mainly gibbsite \((\text{Al(OH)}_3)\), sodalite \((\text{Na}_4\text{Al}_3\text{Si}_3\text{O}_{12}\text{Cl})\), muscovite \((\text{KAl}_2\text{Si}_3\text{O}_{10}\text{(OH)}_2)\), hematite \((\text{Fe}_2\text{O}_3)\) and goethite \((\alpha\text{-FeOOH})\) (Atar et al. 2011; Yin et al. 2013). Through calcining active red mud and boron mud, many minerals could be decomposed to active metal oxides, such as \(\text{MgO, Al}_2\text{O}_3, \text{Fe}_2\text{O}_3\), etc. for the preparation of LDH.

Optimal preparation conditions for the BR-LDH

Effects of the mass ratio of boron mud to red mud

The proper ratio of divalent metal to trivalent metal was the key to forming the LDH crystalline structure. So the mass ratios of boron mud to red mud were investigated to the BR-LDH synthesis. Figure 1 showed the XRD results of BR-LDH with different mass ratios of boron mud to red mud \((1:1, 2:1, 3:1, 4:1, 5:1)\). As shown in Fig. 1(a), BR-600 contained mainly forsterite and muscovite. Fig. 1(b)–(f) showed the XRD patterns for BR-600 with different mass ratios of boron mud to red mud with 0.5 mol/L NaOH. When the mass ratio reached 4:1, the peak at 11.46° corresponding to the \((003)\) crystalline plate of LDH appeared gradually, but it was quite weak (Liao et al. 2012). This was due to the low concentration of NaOH. The following effects of NaOH concentration were studied.

Effects of NaOH concentration

Figure 2(a)–(g) showed the XRD patterns of BR-LDH for different concentrations of NaOH \((0.5, 1, 2, 3, 4, 5, 6 \text{ mol/L})\), respectively. The higher the NaOH concentration was, the more obvious the characteristic peaks of LDH appeared.

Table 1

<table>
<thead>
<tr>
<th>Quality parameters</th>
<th>pH</th>
<th>Turbidity (NTU)</th>
<th>TSS (mg/L)</th>
<th>Soluble P (mg/L)</th>
<th>COD (mg/L)</th>
<th>Total N (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>7.5</td>
<td>54</td>
<td>3</td>
<td>3.6</td>
<td>73</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Boron mud</th>
<th>Mineral components</th>
<th>Muscovite</th>
<th>Forsterite</th>
<th>Huntite</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content [wt %]</td>
<td>25</td>
<td>33</td>
<td>27</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Chemical composition</td>
<td>MgO</td>
<td>Al_2O_3</td>
<td>Fe_2O_3</td>
<td>SiO_2</td>
<td>CaO</td>
</tr>
<tr>
<td>Content [wt %]</td>
<td>37.6</td>
<td>2.22</td>
<td>7.59</td>
<td>18.1</td>
<td>3.48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Red mud</th>
<th>Mineral components</th>
<th>Muscovite</th>
<th>Quartz</th>
<th>Gibbsite</th>
<th>Calcite</th>
<th>Sodalite</th>
<th>Hematite</th>
<th>Goethite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content [wt %]</td>
<td>10</td>
<td>4</td>
<td>15</td>
<td>26</td>
<td>17</td>
<td>17</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Chemical composition</td>
<td>Al_2O_3</td>
<td>Fe_2O_3</td>
<td>SiO_3</td>
<td>TiO_2</td>
<td>CaO</td>
<td>Na_2O</td>
<td>Loss</td>
<td></td>
</tr>
<tr>
<td>Content [wt %]</td>
<td>26.9</td>
<td>15.4</td>
<td>22.3</td>
<td>1.21</td>
<td>2.44</td>
<td>18.1</td>
<td>13.65</td>
<td></td>
</tr>
</tbody>
</table>
However, the characteristic peaks of LDH became weaker as the pH increased from 4 to 6. Thus, a higher concentration of NaOH resulted in the unfavorable generation of LDH. According to these results, the prepared BR-LDH under this optimal conditions (the mass ratio = 4:1 and $C_{NaOH} = 4$ mol/L) were designated as OBR-LDH.

Characterisation of BR-LDH

SEM and energy-dispersive X-ray spectroscopy

Figure 3(a) and (b) depicted the boron mud and red mud micrographs, respectively. Figure 3(c)–(f) showed the SEM images of BR-LDH. The microstructures of BR-LDH were different for different mass ratios of boron mud to red mud at 2 mol/L NaOH. As shown in Fig. 3(d), the sheet structure of BR-LDH appeared. When the NaOH concentration increased from 2 (Fig. 3d) to 4 (Fig. 3e), the sheet structure became clearer. However, the sheet structure almost disappeared when the pH increased from 4 to 6. It was due to the fact that Al(OH)₃ could not precipitate with high NaOH concentration. The energy-dispersive X-ray spectroscopy (EDS) in Fig. 3(d) showed that the main elements were C.
(11.53%), O (40.85%), Mg (11.16%) and Al (16.61%) on the surfaces of BR-LDH and these elements were also the main components of LDH. Thus, it indicated that LDH was successfully prepared using boron mud and red mud. Figure 3(g) showed the SEM of BR-LDH (mass ratio = 4 : 1, CNaOH = 4 mol/L) after adsorption, indicating some pollutants attached on the surface of BR-LDH. The EDS analysis of BR-LDH after phosphate adsorption in Fig. 3(g).
confirmed the presence of phosphorus and potassium and the adsorption of phosphate to BR-LDH.

Thermo-gravimetric-differential thermal analysis

Figure 4(a) showed the thermo-gravimetric-differential thermal analysis (TG-DTG) plots of BR-600. In the DTG pattern three mass loss steps were observed at 123, 243 and 464°C with mass losses of 4.00, 5.20 and 3.50%. The first stage was mainly attributed to the elimination of physically adsorbed water molecules. The second stage at 243°C and the third stage at 464°C were ascribed to the loss of adsorbed water and dehydration, respectively.

Figure 4(b) showed the TG-DTG plots of representative BR-LDH exhibiting three stages in the weight loss with increased temperature. Three mass loss steps were observed at 145, 237 and 468°C with mass losses of 4.97, 9.33 and 6.85%, respectively. The first stage at 145°C could be resolved into two overlapped processes and mainly ascribed to the elimination of physically adsorbed and interlayered water molecules. The second and third loss stemmed at 237 and 468°C from the loss of hydroxyl groups from the brucite-like layer along with interlayer carbonate ions with concomitant destruction of the layered structure (Reichle et al. 1986; Frost et al. 2007). The overall thermal behavior of BR-LDH was agreement with that reported for MgAl-LDH samples (Frost et al. 2006; Wang et al. 2013). The results of TG-DTG further illustrated that LDH had been successfully prepared by calcination of mixed boron mud and red mud under the basic medium.

Adsorption of phosphate by BR-LDH

The BR-LDH prepared under the optimal preparation conditions (mass ratio of boron mud to red mud = 4 : 1 and C\(\text{NaOH} = 4\) mol/L) was designated as OBR-LDH and adsorption experiments are performed.

Different adsorbent dosages were studied at 298 K for 3 h in water and phosphate solutions (100 mg/L). As shown in Fig. 5(a), the ratio of phosphate adsorbed by BR-600 (I) and OBR-LDH (II) reached equilibrium when the dosage is 0.25 g/50 mL. The ratios of phosphate adsorption reached 71.17 and 86.18%, respectively. It indicated that OBR-LDH possessed higher adsorption ability than BR-600 for phosphate and 0.25 g/50 mL was the experimentally determined optimal absorbent dosage.

Figure 5(b) showed the effects of the contact time on adsorption of phosphate at the dosage of 0.25 g/50 mL. Phosphate adsorption was very fast at the beginning of the adsorption experiments. At 30 min, the adsorption process gradually slowed down. The adsorption processes reached equilibrium after 200 min. The maximum ratio of phosphate adsorption was 89.51%. The results were in agreement with previous studies indicating fast initial oxyanion adsorption by Mg/Al-LDH followed by a slower process until reaching equilibrium (Hu et al. 2014). Owing to the positive charges of the layer, OBR-LDH interacted strongly with anionic species in the medium and anion removal took place by two different mechanisms: (a) adsorption on the external surface and (b) anion exchange (Wei et al. 2011). The adsorption process was faster than anion exchange due to the strong interactions between negative ions and the positive external surface, while ion exchange was a diffusion process.

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>(q_{e,exp})</th>
<th>(q_{e,cal})</th>
<th>(k_1)</th>
<th>(R^2)</th>
<th>(q_{e,cal})</th>
<th>(k_1)</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBR-LDH</td>
<td>18.22</td>
<td>22.99</td>
<td>0.0184</td>
<td>0.8202</td>
<td>19.73</td>
<td>0.627</td>
<td>0.8797</td>
</tr>
</tbody>
</table>

Table 3 Kinetic models parameters obtained in adsorption of phosphate on OBR-LDH.
Figure 5(c) showed that the ratio of phosphate adsorption increased with temperature in this range. It could be explained by that adsorption process was endothermic (Kannamba et al. 2010). The interaction between molecules in the layers of OBR-LDH became stronger as the temperature went up and the ratio of phosphate adsorption reached 95.4% at 60°C.

The pH of the aqueous solution was an important parameter to adsorption. Figure 5(d) showed the ratio of phosphate adsorbed on OBR-LDH at different pH. The ratio of phosphate adsorption on OBR-LDH was higher under acidic conditions than alkaline conditions. The ratio of phosphate adsorption decreased slowly when the pH rises from 1 to 7 due to the higher mobility of H\(^+\) in the solution. OBR-LDH tended to adsorb phosphate on the surface at the moment. When the pH was higher than 7, a large amount of OH\(^-\) adsorbed on OBR-LDH, resulted in less phosphate adsorption. The ratio of phosphate adsorption was more than 93% at pH = 6–9, so the solution pH did not necessary to adjust in practical applications.

Adsorption kinetics

In order to study the adsorption kinetics of phosphate on OBR-LDH, the pseudo-first-order and pseudo-second-order kinetic models are tested. The linear form of the pseudo-first-order (3) and pseudo-second-order (4) equation are expressed as follows (Ho & Mckay 1999):

\[
\log (q_e - q_t) = \log q_e - \frac{k_f t}{2.303}
\]

\[
\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e}
\]

where \(k_f\) (L/min) is the rate constant of pseudo-first order adsorption. \(q_e\) (mg/g) and \(q_t\) (mg/g) are the amounts of phosphate adsorbed on the adsorbents at equilibrium and at time \(t\) (min), respectively. \(k_2\) (g/(mg-min)) is the pseudo-second-order constant, and \(k_f\) and \(q_e\) for OBR-LDH can be determined from the plot of \(\log (q_e - q_t)\) versus \(t\) in Fig. 6(a). The values of \(q_e\) and \(k_2\) can be determined experimentally from the slope and intercept of the plot \(\frac{t}{q_t}\) versus \(t\) in Fig. 6(b). The parameters and correlation coefficients were presented in Table 2. As shown in Fig. 6 and Table 3, the correlation coefficients \(R^2\) of the pseudo-second-order expression was larger than that of the pseudo-first-order expression.

Table 4 Freundlich and Langmuir constants and correlation coefficients for adsorption of phosphate on OBR-LDH

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>(q_m)</th>
<th>(b)</th>
<th>(R^2)</th>
<th>(n)</th>
<th>(k_f)</th>
<th>(R^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBR-LDH</td>
<td>2.615</td>
<td>0.0312</td>
<td>0.860</td>
<td>1.270</td>
<td>3.244</td>
<td>0.945</td>
</tr>
</tbody>
</table>

Fig. 7. (a) Langmuir and (b) Freundlich plots for adsorption of phosphate on OBR-LDH. [Colour figure can be viewed at wileyonlinelibrary.com]

Fig. 8. FT-IR results: (a) OBR-LDH before adsorption and (b) OBR-LDH after adsorption. [Colour figure can be viewed at wileyonlinelibrary.com]
Fig. 9. XPS of OBR-LDH before and after adsorption. [Colour figure can be viewed at wileyonlinelibrary.com]
The calculated adsorption capacity \(q_{e,\text{cal}}\) estimated by the pseudo-first-order model differed substantially to the experimental values, whereas the \(q_{e,\text{cal}}\) values calculated from the pseudo-second-order kinetics model were very close to the experimental data. Moreover, the correlation coefficients \(R^2\) for the pseudo-second-order model was much larger than that of the pseudo-first-order model (Mandal et al. 2014).

Adsorption isotherms

The equilibrium adsorption isotherm is fundamental to the behavior between the solution and adsorbent and important to the design of the adsorption system. The adsorption capacities at different aqueous equilibrium concentrations could be illustrated by the adsorption isotherms. Under the optimal preparation conditions, the adsorption isotherms of the two types of OBR-LDH for phosphate were studied at room temperature and the results were shown in Fig. 7. The adsorption equilibrium data of phosphate on OBR-LDH were processed according to the well-known two equilibrium models: Langmuir (6) and Freundlich (7) and the results were presented in Table 4.

\[
\frac{c_e}{q_e} = \frac{1}{bq_m} + \frac{c_p}{q_m} \\
\log q_e = \log K_f + \frac{1}{n} \log c_e
\]

where \(c_e\) (mg/L) are the equilibrium concentrations of phosphate adsorbed on the adsorbents. \(q_e\) (mg/g) and \(q_m\) (mg/g) are the adsorption capacity at equilibrium and at any time \(t\) (min), respectively. \(b\) (L/mg) is the Langmuir adsorption equilibrium constant related to the rate of adsorption. \(K_f\) ((mg/g)/ (mg/L))\(^n\)) and \(n\) are the Freundlich constant and intensity factors, respectively (Xiang et al. 2010).

According to the values of \(R^2\) in Table 3, the mathematical fit was better for the Freundlich isotherm than Langmuir isotherm. The calculated value of \(n\) (>1) in the Freundlich equation indicated a favorable adsorption process and adsorption was mainly multilayer adsorption.

Adsorption mechanism

In order to explain the interaction mechanisms between phosphate and OBR-LDH, FT-IR, XPS, Zeta potential determination and XRD were conducted on OBR-LDH before and after adsorption in Figs 8–10 and 11, respectively.

As shown in Fig. 8, the broad and intense adsorption bands at 3436 cm\(^{-1}\) (O–H stretching vibration) and 1631 cm\(^{-1}\) (O–H bending vibration) indicated the presence of interstitial water molecules. The peaks at 1496, 1422, 994 and 862 cm\(^{-1}\) were the characteristic absorption peaks of C–O, implying the presence of CO\(_2\) species in the interlayer of OBR-LDH (Labajos et al. 1991). The peak at 1076 cm\(^{-1}\) was attributed to the bending vibration of adsorbed phosphate P–O (Liu et al. 2008). It indicated that H\(_2\)PO\(_4\) had entered the interlayer of OBR-LDH.

To further explain the adsorption mechanism, the XPS of OBR-LDH before and after adsorption were conducted. As shown in Fig. 9, the Mg 2p and Al 2p were located at 50.34 and 74.40 eV in OBR-LDH before and after adsorption. It indicated that Mg(II) and Al(III) oxidation state were in the precipitates. The O 1s peak resulted in three peaks with the Gaussian shape, corresponding to O\(_2\), OH\(_2\) and H\(_2\)O, respectively. The peak of P 2p after adsorption appeared at 133.76 eV, illustrated that P in the form of H\(_2\)PO\(_4\) was present in the OBR-LDH. It further indicated that H\(_2\)PO\(_4\) had entered the interlayer of OBR-LDH (Wu et al. 2012).

The zeta potentials before and after adsorption were shown in Fig. 10. The isoelectric points (pHzpc) of OBR-LDH according to the values of \(R^2\) in Table 3, the mathematical fit was better for the Freundlich isotherm than Langmuir isotherm. The calculated value of \(n\) (>1) in the Freundlich equation indicated a favorable adsorption process and adsorption was mainly multilayer adsorption.

Adsorption mechanism

In order to explain the interaction mechanisms between phosphate and OBR-LDH, FT-IR, XPS, Zeta potential determination and XRD were conducted on OBR-LDH before and after adsorption in Figs 8–10 and 11, respectively. As shown in Fig. 8, the broad and intense adsorption bands at 3436 cm\(^{-1}\) (O–H stretching vibration) and 1631 cm\(^{-1}\) (O–H bending vibration) indicated the presence of interstitial water molecules. The peaks at 1496, 1422, 994 and 862 cm\(^{-1}\) were the characteristic absorption peaks of C–O, implying the presence of CO\(_2\) species in the interlayer of OBR-LDH (Labajos et al. 1991). The peak at 1076 cm\(^{-1}\) was attributed to the bending vibration of adsorbed phosphate P–O (Liu et al. 2008). It indicated that H\(_2\)PO\(_4\) had entered the interlayer of OBR-LDH.

To further explain the adsorption mechanism, the XPS of OBR-LDH before and after adsorption were conducted. As shown in Fig. 9, the Mg 2p and Al 2p were located at 50.34 and 74.40 eV in OBR-LDH before and after adsorption. It indicated that Mg(II) and Al(III) oxidation state were in the precipitates. The O 1s peak resulted in three peaks with the Gaussian shape, corresponding to O\(_2\), OH\(_2\) and H\(_2\)O, respectively. The peak of P 2p after adsorption appeared at 133.76 eV, illustrated that P in the form of H\(_2\)PO\(_4\) was present in the OBR-LDH. It further indicated that H\(_2\)PO\(_4\) had entered the interlayer of OBR-LDH (Wu et al. 2012).

The zeta potentials before and after adsorption were shown in Fig. 10. The isoelectric points (pHzpc) of OBR-LDH According to the values of \(R^2\) in Table 3, the mathematical fit was better for the Freundlich isotherm than Langmuir isotherm. The calculated value of \(n\) (>1) in the Freundlich equation indicated a favorable adsorption process and adsorption was mainly multilayer adsorption.
were determined by the pH when the zeta potential was zero to 6.84. After phosphate adsorption, the zeta potential of OBR-LDH decreased at different pH values and the pH_{pzc} shifted to 5.73. The solution pH was lower than pH_{pzc} of OBR-LDH (<6.84). The surface hydroxyl groups became protonated (–OH^{+}) and attracted negatively charged phosphate anions H_{2}PO_{4}^{-}. As the pH increased, the zeta potentials of OBR-LDH decreased. When the solution pH raised to 6.84, the surface of OBR-LDH was negatively charged. The electrostatic repulsion between the negatively charged surface sites and electronegative phosphate species resulted in less phosphate adsorption. This was in agreement with Fig. 5(d). Through the above analysis, the electrostatic attraction also played an important role in phosphorus adsorption (Yang et al. 2014).

The XRD patterns of OBR-LDH before and after adsorption were shown in Fig. 11. The peak of hydrotalcite shifted from 11.28° to 10.09°. It indicated that phosphate was adsorbed in the hydrotalcite layers and replaced interlayer ions, leading to larger layer space. However, in Figs (1 and 2) and 11, the peaks of Forsterite and Ca_{4}Al_{2}SO_{10}\cdot16H_{2}O were almost no changes. Meanwhile, compared to BR-600 of 71.17%, the ratio of phosphate adsorbed of OBR-LDH increased to 86.18% in Fig. 5(a). It showed that better adsorption effect was because of the formation of hydrotalcite.

Phosphate species were adsorbed by electrostatic attraction, ligand exchange, and ion exchange (Chitrakar et al. 2006; Mcbride 1994). According to zeta potentials (Fig. 10), the negatively charged phosphate species (H_{2}PO_{4}^{-}) could be

![Schematic diagram illustrating the possible adsorption mechanism on OBR-LDH.](http://wileyonlinelibrary.com)

Fig. 12. Schematic diagram illustrating the possible adsorption mechanism on OBR-LDH. [Colour figure can be viewed at wileyonlinelibrary.com]

![The adsorption–desorption cycle of OBR-LDH.](http://wileyonlinelibrary.com)

Fig. 13. The adsorption–desorption cycle of OBR-LDH.
attracted electrostatically by the electropositive adsorbent surface since the solution pH was below the pHzpc of OBR-LDH. The surface hydroxyl groups facilitated ligand exchange because –OH could be more easily displaced from the metal binding sites than hydroxyl groups at a low pH (Xue et al. 2009). Ion exchange also occurred between the interlayer anions CO$_3^{2-}$ and phosphate species. Thus, adsorption of phosphate species was postulated to proceed by three steps as illustrated in Fig. 12: (1) transfer of phosphate from the aqueous solution to sites on the OBR-LDH, (2) electrostatic attraction at the active sites and (3) ion exchange between the interlayer CO$_3^{2-}$ and phosphate species.

Adsorption–desorption experiment

In order to determine the regenerability of OBR-LDH for its subsequent application as an adsorbent, the material was subjected to repeated adsorption–desorption cycles. In the present study, OBR-LDH saturated with phosphate were treated with 0.1 mol/L Na$_2$CO$_3$ solution. After that, the treated OBR-LDH was washed with doubly distilled water to remove any excessive CO$_3^{2-}$ ions until the pH was in the range of 7.0–8.0. The regeneration efficiency was studied up to five adsorption–desorption cycles and the results are presented in Fig. 13. When the adsorption–desorption cycles were less than 2, the ratio of phosphate adsorbed of the regenerated OBR-LDH were still higher than 80% and had the good adsorption capacity. It indicated that the OBR-LDH could be recycled.

Phosphate removal from real effluent

In the actual process, the real wastewater usually contained inorganic, organics, heavy metals or microorganisms and their presence might have a great influence on final treatment effect. The real wastewater from Qinghe sewage treatment plant was used to study the phosphate removal by OBR-LDH and the results were showed in Fig. 14. When adsorbent dosage was 0.5 g/50 mL, the ratio of phosphate adsorbed (%) could reach 96.81%, and the concentration of soluble phosphate decreased from 3.6 to 0.11 mg/L. Meanwhile, the COD of the real wastewater also decreased from 73 to 47 mg/L. The results indicated the OBR-LDH could remove phosphate from the real wastewater and have potential application in the treatment of the real wastewater from sewage treatment plant.

Conclusion

OBR-LDH was successfully prepared when the mass ratio of boron mud to red mud and C$_{NaOH}$ were 4 : 1 and 4 mol/L, respectively. The XRD and SEM showed that the prepared OBR-LDH had typical characteristics of LDH. The pseudo-second-order model accurately described the phosphate adsorption kinetics for the prepared OBR-LDH. The mathematical fit was better for the Freundlich isotherm than Langmuir isotherm and indicated adsorption was mainly multilayer adsorption. The FT-IR, XPS, Zeta potential determination and XRD indicated the electrostatic attraction, ion exchange and replacement of surface hydroxyl groups by phosphate were mainly responsible for phosphate adsorption by OBR-LDH. At the adsorbent dosage of 0.25 g/50 mL, contact time of 200 min, the temperature of 60°C, and pH of 6–9, the ratio of phosphate adsorbed could reach 93%. The adsorption–desorption experiment indicated the OBR-LDH can be recycled. The result of the actual experimental wastewater showed the ratio of phosphate adsorbed (%) could reach 96.81% at 0.5 g/50 mL of adsorbent dosage and the treatment effect was very obvious. In short, the OBR-LDH based on the boron mud and red mud was a good phosphate adsorbent and had high potential in reducing wastes, treating water and protecting the environment.

Acknowledgements

This work was supported by the National High Technology Research and Development Program of China [863 Program, 2012AA06A109], City University of Hong Kong Strategic Research Grant (SRG) [No. 7004188], and City University of Hong Kong Applied Research Grant (ARG) [No. 9667085].

To submit a comment on this article please go to http://mc.manuscriptcentral.com/wej. For further information please see the Author Guidelines at wileyonlinelibrary.com

References

