Self-assembled magnetic fluorescent polymeric micelles for magnetic resonance and optical imaging

Kai Yan a,1, Huan Li b,1, Penghui Li c, Haibo Zhu d, Jie Shen d, Changfeng Yi a,d, Shuilin Wu a,c, Kelvin W.K. Yeung d, Zushun Xu a,c,***, Haibo Xu b,**, Paul K. Chu c,***

Abstract
Stable and cytocompatible hybrid PEGylated micelles with multimodal imaging capabilities are described. The Fe3O4-encapsulated polymeric micelles composed of cores containing magnetic nanoparticles and polyethylene glycol (PEG) shells are synthesized by self-assembly of amphiphilic poly(-HFMA-co-VBK)-g-PEG copolymers and oleic acid stabilized Fe3O4 nanoparticles. The Fe3O4 magnetic nanoparticles in the core produce T2-weighted MR imaging functionalities, whereas the small fluorescent monomer carbazole in the polymer shell introduces good fluorescent properties. The multifunctional micelles exhibit excellent paramagnetic properties with the maximum saturation magnetization of 9.61emu/g and transverse relaxivity rate of 15744 mM−1 s−1. In vivo magnetic resonance imaging (MRI) studies reveal enhanced contrast between the liver and spleen. Fluorescence spectra show characteristic emission peaks from carbazole at 350 nm and 365 nm and vivid blue fluorescence can be observed by 2-photon confocal scanning laser microscopy (CLSM). In vivo optical imaging demonstrates the unique fluorescent characteristics of the Fe3O4-encapsulated polymeric micelles in the liver and spleen and the excellent multifunctional properties suggest potential clinical use as nanocarriers in magnetic resonance imaging and optical imaging.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction
The emergence of nanotechnology and biotechnology has created an exciting and interdisciplinary area of nanobiotechnology [1–3]. Multifunctional nanocarriers possess favorable properties integrated into a single nanosystem spurring new applications such as multimodal imaging and simultaneous diagnosis and therapy [4–6]. As diagnostic techniques, they have been explored in magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), optical imaging, and so on [7,8]. However, most of them have drawbacks such as low sensitivity, weak penetrability, and insufficient spatial or temporal resolution [9–11] and there have been attempts to combine two or more imaging modalities to improve the performance [12,13], for instance, PET/CT [14], MRI/CT [15], MRI/PET [16], and MRI/optical imaging [17–21]. One of the popular approaches is to combine the MRI and optical imaging modalities [22]. MR imaging offers high spatial resolution and the capacity to simultaneously obtain physiological and anatomical information in living organisms based on the interactions between protons and molecules in the surrounding tissues, whereas optical imaging allows rapid screening [23,24].

Magnetic resonance imaging (MRI) is one of the most useful diagnostic techniques providing noninvasive and real-time detection of diseases and super-paramagnetic nanoparticles are excellent contrast agents capable of noninvasive monitoring of pathological changes on both the molecular and cellular levels in vivo [25,26]. However, magnetic nanoparticles are commonly stabilized with oleic acid and their biological applications are hampered because of the poor dispersion properties in blood [27,28]. Several strategies such as ligand exchange [29] and self-assembly [30,31] have been proposed to enhance their water

ARTICLE INFO
Article history:
Received 18 August 2013
Accepted 10 September 2013
Available online 5 October 2013

Keywords:
Self-assembly
Amphiphilic copolymer
Magnetic nanoparticles
Magnetic resonance imaging
Optical imaging
solubility. In particular, amphiphilic polymers produced by controlled radical polymerization for magnetic nanoparticle encapsulation exhibit good colloidal stability compared to small molecule surfactants [32,33]. Kim et al. reported amphiphilic poly(styrene-block-acrylic acid) (PS-b-PA13) copolymer in with magnetic nanoparticles to enclose the particles in the copolymer micelles. They demonstrated that the surrounding polymer could be cross-linked to fix the nanostructures topologically and these structures were stable to subsequent synthetic transformation of surface functional groups [34]. Ai et al. showed that oleic acid and oleylamine modified magnetic particles could be encapsulated inside the hydrophobic core of poly(-caprolactone)-b-poly(ethylene glycol)/PCL-b-PEG) micelles by ring-opening polymerization [35].

Fluorescent nanomaterials comprising π-conjugated polymers have attracted much interest lately due to their small size as well as high fluorescence and photochemical stability which render them appealing as bioprobes in labeling and imaging [36]. For example, carbazole and their derivatives have a large conjugated system, photoconductive feature, and strong intramolecular electron transfer and are excellent optical materials [37]. Li prepared water-soluble trifunctional nanoparticles with thermoresponsive, magnetic, and fluorescent hybrid via surface-initiated reversible addition–fragmentation chain transfer (RAFT) polymerization. They used the fluorescent RAFT agent with carbazole as the chain transfer agent, which could enhance the negative contrast in MRI [38].

In our previous work, we demonstrated the preparation of magnetite (Fe3O4)-loaded polymer micelles by self-assembly of fluorine-containing amphiphilic poly(HFMA-g-PEGMA) copolymers with oleic acid modified Fe3O4 nanoparticles in an aqueous medium [39]. However, the single imaging modality could not convey all the necessary information about the biological structure and functions of an organ. Herein, a dual-modality imaging probe is designed and fabricated in and in vivo optical imaging and MRI experiments demonstrate their suitability as T2-weighted negative MRI contrast agents and fluorescent probes in liver and spleen imaging.

2. Materials and methods

2.1. Materials

2,3,3,4,4,4-Hexafluorobutyl methacrylate (HFMA) purchased from Xenog Furo- nine–Silicon Chemical Company (Harbin, China, Chemical Purity) was distilled at reduced pressure before use. Methoxy poly(ethylene glycol) monomethacrylate (PEGMA) (average Mn, 950 g/mol) was obtained from Aldrich and used without further purification and 2,2-azobisobutyronitrile (AIBN, analytical grade) was purified by recrystallization in ethanol. 4-Vinylbenzyl chloride (90%) and carbazole (>95%) were supplied by Aldrich Chemical Company. Potassium iodide (KI), oleic acid (OA, analytical reagent), sodium hydroxide (NaOH), iron (III) chloride hexahydrate (FeCl3·6H2O), iron (II) chloride tetrahydrate (FeCl2·4H2O), ammonium hydroxide (NH3·H2O, 25–28%), ethanol, hexane, N,N-dimethylformamide (DMF, analytical reagent), and tetrahydrofuran (THF, analytical reagent) were purchased from Sinopharm Chemical Reagent Co., Ltd., China and 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) were bought from Sigma–Aldrich.

2.2. Synthesis of 9-(4-vinylbenzyl)-9H-carbazole (VBK)

The fluorescent monomer VBK was synthesized according to that described in the literature with some modifications [40] as shown in Scheme 1. Succinctly speaking, 2.1 g of carbazole and 0.63 g of NaOH were dissolved in 30 mL of DMF together with 0.05 g of KI as the catalyst under vigorous magnetic stirring for 3 h. 2.34 g of 4-vinylbenzyl chloride was dropped slowly into the mixture at room temperature (RT) and after stirring for 26 h at room temperature, the mixture was poured into a large amount of deionized water. The crude product was precipitated and collected by filtration and white crystals were produced by recrystallization in aceton. 2.3. Preparation of iron oxide nanoparticles

Mono-dispersed super-paramagnetic iron oxide nanoparticles were prepared by chemical co-precipitation, followed by modification with oleic acid [41]. 0.101 g of FeCl2·4H2O and 13.31 g of FeCl3·6H2O were mixed in 160 mL of deoxegenerated water in a 500 mL three-necked flask. The solution was stirred under nitrogen for 0.5 h and 90 mL of NH3·H2O was added drop-wise to obtain a pH value of 10–11 in order to produce black precipitate and allow the growth of iron oxide nanoparticles. The solution was heated to 75 °C for 1 h and 9 g of oleic acid were added drop by drop at a constant rate and the reaction proceeded for another hour. Afterwards, the black mixture was cooled and washed by repeated dispersion and precipitation with hexane and ethanol, respectively. The final product was dispersed in hexane and the resulting ferrofluid was sealed in a glass vial for storage.

2.4. Synthesis of amphiphilic poly(HFMA-co-VBK)-g-PEG copolymers

The amphiphilic poly(HFMA-co-VBK)-g-PEG copolymers were synthesized by free radical polymerization as described in our previous paper [42]. Briefly, 1.005 g of PEGMA, 0.815 g of HFMA, and 0.102 g of VBK were dissolved in 12 mL of THF. After adding 0.068 g of AIBN as the radical initiator, the mixture was transferred to a 50 mL round-bottom flask with a magnetic stirrer and degassed by bubbling with N2 several times in an ice bath. Polymerization proceeded at 75 °C for 24 h and the amphiphilic poly(HFMA-co-VBK)-g-PEG copolymers were collected by precipitation in hexane three times. The purified products were dried under vacuum at 35 °C for later use.

2.5. Preparation of Fe3O4-encapsulated polymeric micelles

The amphiphilic poly(HFMA-co-VBK)-g-PEG copolymers were dissolved in 25 mL of distilled water and mixed with the oleic acid stabilized Fe3O4 nanoparticles (0.210 g) in hexane. The two-phase suspension was vigorously sonicated at 70 °C for 20 min under nitrogen bubbling to evaporate the hexane and produce the self-assembled micelles. The colloids underwent centrifugation and the collected Fe3O4-encapsulated polymeric micelles were washed three times with distilled water to remove the unbound polymer.

2.6. Effects of HFMA/PEGMA + VBK ratio on Fe3O4 loading efficiency

To optimize the Fe3O4 loading efficiency, a series of poly(HFMA-co-VBK)-g-PEG samples with variable HFMA/PEGMA + VBK mass ratios from 0.258:1 (1.004 : 0.101) to 1.516:1 (1.004 : 0.101) were synthesized. The oleic acid stabilized Fe3O4 nanoparticles were added to the amphiphilic copolymers at the same ratio described in Section 2.5. Here, the abbreviation scheme PEG−VBK−F represents, where X represents the HFMA wt% in the amphiphilic copolymer. For example, PEG−VBK−F-25 is the amphiphilic copolymer with 25.2 wt% of HFMA in the backbones. The samples were lyophilized and the Fe3O4 loading efficiency was evaluated by atomic absorption spectrophotometry (AA-680).

2.7. In vitro cytotoxicity

The cytotoxicity of the Fe3O4-encapsulated polymeric micelles was assessed by the MTT assay. HeLa cells were placed on the wells (104 cells per well) of 96-well plates, grown for 24 h, washed with PBS (pH = 7.4), and incubated with different concentrations of Fe3O4-encapsulated polymeric micelles (dose diluted by complete medium, 0–1000 µg/mL) for another 24 h. Afterwards, the supernatants were removed and cells were washed with PBS (pH = 7.4) three times. 40 µL of the MTT solution (2.5 mg mL−1) were added to each well and after incubation for 4 h, the culture medium was discarded. Each well received 100 µL of DMSO and vigorous pipetting for 3–5 min to dissolve the precipitates. The absorption peak at 570 nm was measured on a microplate reader and data from six parallel wells were averaged to obtain the result for each sample. The relative cell viability was calculated by the following equation: Relative cell viability (%) = (ODtreated/ODcontrol) × 100, where ODtreated was obtained in the presence of the Fe3O4-encapsulated polymeric micelles and ODcontrol was obtained without the Fe3O4-encapsulated polymeric micelles and defined as 100% viability.

![Scheme 1. Schematic illustration of the preparation fluorescent monomer VBK.](image-url)
2.8. In vitro MRI characterization and in vivo MRI

To determine the relaxivity, the Fe3O4-encapsulated polymeric micelles were diluted with distilled water containing iron concentrations in the range of 0.015–0.16 mmol/L. The samples were transferred to a series of 600-μL sample tube, placed in an MR scanner, and tested based on a number of MR sequences. The T2 relaxation time of the suspension was computed using the in-house software (MATLAB V7.1) and the relaxivity values of T2 were calculated by fitting the 1/T2 relaxation time versus Fe concentration (mM) curve.

The in vivo MRI studies were performed on SD mice (weight of approximately 240 g). All the animals were managed and treated according to the rules and regulations of the Institutional Animal Care and Use Committee at Hubei University, and the animal protocols were also approved by the Institutional Animal Care. The mice were anaesthetized by trichloroacetaldehyde hydrate (10%) with a dose of 6 mg (Fe/kg through the tail vein for 4 h. The T2-weighted coronal MR images were acquired from the MR scanner. The signal intensity (SI) was measured at each time point and the relative SI changes were plotted versus time. The relative signal enhancement values (RSEs) were calculated using SI measurements before (SIpre) and after (SIpost) injection of the contrast agents based on the following formula:

\[\text{RSE} = \left(\frac{\text{SI}_{\text{post}} - \text{SI}_{\text{pre}}}{\text{SI}_{\text{pre}}} \right) \times 100\% \]

The SIpost values were determined at time points of 30 min, 60 min, 120 min, 180 min, and 240 min.

2.9. Histological analysis

The mice were sacrificed 10 h after injection with the Fe3O4-encapsulated polymeric micelles. The liver, spleen, kidney, and muscle were fixed in 4% paraformaldehyde for 24 h and transferred to 30% sucrose in the PBS buffer. The tissues were prepared for histological analysis by Prussian blue staining (iron staining). In the pathological analysis, the slides of liver and spleen were prepared for confocal laser scanning microscopy (CLSM).

2.10. Characterization

1H NMR was used to determine the chemical structure of VBK and amphiphilic poly(HFMA-co-VBK)-g-PEG copolymers. It was conducted on the UNITY INVOA 600 MHz spectrometer (Varian, USA) with DMSO-d6 and CDCl3 as the solvent.

Dynamic light scattering (DLS) was employed to determine the number-average molecular weight (Mn) and weight-average molecular weight (Mw) and polydispersity index (PDI) were measured by gel permeation chromatography (GPC) utilizing the 1515 pump. The morphology of the nanoparticles (oleic acid stabilized Fe3O4 nanoparticles, amphiphilic poly(HFMA-co-VBK)-g-PEG copolymer micelles, and Fe3O4-encapsulated polymeric micelles) was examined by transmission electron microscopy (TEM, Tecnai G20, FEI Corp., USA) at an accelerating voltage of 200 kV. The hydrodynamic size and size distribution of the samples were characterized by dynamic light scattering (DLS, Autosize Loc-Fc-963, Malvern Instrument). The excitation and emission spectra of the amphiphilic poly(HFMA-co-VBK)-g-PEG copolymer micelles and Fe3O4-encapsulated polymeric micelles were measured on an F-2500 spectrophotometer (Hitachi High Technologies Corporation, Japan). The CLSM images of the amphiphilic poly(HFMA-co-VBK)-g-PEG copolymer micelles, liver, and spleen were obtained on the Spectra Physics M1010 TP tunable 2-photon (690–1040 nm) laser confocal microscopy (Carl Zeiss LSM710) using 2-photon laser excitation at 690 nm. The XRD (X-ray diffraction) spectra of the oleic acid stabilized Fe3O4 nanoparticles and Fe3O4-encapsulated polymeric micelles were acquired on the X’PertPro (Philips Corp., Nederland) using Cu Kα radiation at a scanning rate of 10°/min from 20° to 80°. The magnetic properties were studied using a vibrating sample magnetometer (VSM, HH-15, China) at 298 K under an applied magnetic field. The thermogravimetric analysis was performed on the Perkin Elmer TGA-7 and the dried powder samples were heated at the rate 10° C/min from 50° C to 600° C in a nitrogen atmosphere.

Both the in vitro and in vivo MRI experiments were performed at 25 °C using a 3.0 T whole-body MR scanner (MA;NETOM Trio, A Tim System 3T, Siemens, Munich, Germany) in combination with an 8-channel wrist joint coil. In the in vitro MRI experiment, the following parameters were adopted: field of view (FOV) = 120 mm, base resolution = 384 × 384, slice thickness = 1.5 mm, multiple echo times (TE) = 20, 40, 60, 80, 100, 120, and 140 ms, repetition time (TR) = 2000 ms, and scanned time = 13–14 min. The Fe concentration of the micelles in water was determined by atomic absorption spectrophotometry (AA-680) after dissolving the micelles in a solution of HNO3/HClO4 at 150 °C. In the in vivo MRI experiments, the field of view (FOV) was 100 mm, base resolution was 192 × 192, slice thickness was 3.0 mm, multiple echo time (TE) was 62 ms, repetition time (TR) was 3000 ms, and flip angle was 120°.

3. Results and discussion

The process to synthesize the Fe3O4-encapsulated polymeric micelles is illustrated in Scheme 2. The super-paramagnetic iron oxide nanoparticles, which are frequently used as contrast agents in MRI, are produced by chemical co-precipitation and then modified

Scheme 2. Schematic illustration of the preparation of the magnetic fluorescent polymeric micelles encapsulated with magnetic nanoparticles by self-assembly.
with oleic acid to enhance dispersion in hexane. The amphiphilic fluorescent poly(HFMA-co-VBK)-g-PEG copolymers are prepared by polymerization of the hydrophobic HFMA monomers, hydrophilic PEGMA macromonomers, and fluorescent monomers VBK in THF at 75 °C. Generally, amphiphilic polymers which form micelles in water via self-assembly can encapsulate the hydrophobic guest molecules [43]. In this approach, the hydrophobic fluorocarbon segments are inserted into the oleic acid shell of the magnetic nanoparticles with the hydrophilic parts on the surface forming the water-soluble nanocomposites after evaporation of hexane. The water-soluble nanocomposites are stable in neutral aqueous solutions and suitable for biomedical applications.

3.1. Synthesis and characterization of fluorescent monomer VBK and amphiphilic poly(HFMA-co-VBK)-g-PEG copolymers

Scheme 1 shows the fluorescent monomer VBK synthesis pathway. A new type of fluorescent monomer VBK is synthesized by Michael-type reaction and the amphiphilic fluorescent poly(HFMA-co-VBK)-g-PEG copolymers are prepared by radical polymerization in THF using AIBN as the initiator. The chemical structures are determined by 1H NMR and Fig. 1a shows the spectrum of the fluorescent monomer VBK. The characteristic signals of VBK are: (a & p, δ = 7.12 ppm), (b & o, δ = 7.42 ppm), (c & n, δ = 7.21 ppm), (d & m, δ = 7.34 ppm), (e, δ = 5.63 ppm), (f & l, δ = 7.61 ppm), (g & k, δ = 8.15 ppm), (h, δ = 6.62 ppm), (I, δ = 7.71 ppm).
In comparison with the 1H NMR spectrum of the VBK shown in Fig. 1a, several new peaks can be observed from the amphiphilic copolymer and they can be ascribed to the protons of the HFMA and PEGMA segments. The characteristic signals of the PEG graft chains consist of the broad peak at $\delta = 3.63$ ppm (d) assigned to $-\text{CH}_2\text{CH}_2\text{O}-$, the peak at $\delta = 4.09$ ppm (c) belonging to the repeating units of the PEG segment, and the singlet at $\delta = 3.38$ ppm (a) assigned to $-\text{OCH}_3$. The characteristic signals of the fluorinated HFMA segments include the peaks at $\delta = 4.33$ ppm (b) assigned to $-\text{CH}_2\text{CF}_2-$ and $\delta = 4.95$ ppm (a) corresponding to $-\text{CHFCF}_3$ of the HFMA segment. In addition, the signal at 1.92 ppm (m) is associated with $-\text{CH}_2-$ of the copolymer backbone and that at 0.82–1.32 ppm (n) is attributed to $-\text{CH}_3$ linked to the backbone.

Fig. 2b shows the FTIR spectrum of the amphiphilic poly(HFMA-co-VBK)-g-PEG copolymers. The characteristic strong absorption of ester carbonyl (C=O) bands in HFMA and PEG appears at 1745 cm$^{-1}$ and the peak at 1189 cm$^{-1}$ is assigned to absorption by the C–F groups. The strong peak at 1102 cm$^{-1}$ is attributed to absorption by the ether bands (C–O) in PEG, the broad peak at 2889 cm$^{-1}$ arises from to $-\text{CH}_3$ and $-\text{CH}_2-$ groups and that at 1455 cm$^{-1}$ stems from aromatic groups in the chain of VBK.

Fig. 5. TEM images: (a) Oleic acid stabilized Fe$_3$O$_4$ nanoparticles in hexane, (b) Amphiphilic poly(HFMA-co-VBK)-g-PEG copolymers in water, (c) and (d) Fe$_3$O$_4$-encapsulated polymeric micelles in water with different rear views, Size distribution of (e) oleic acid stabilized Fe$_3$O$_4$ nanoparticles in hexane and (f) hybrid micelles in water.
The molecular weight and molecular weight distribution of the amphiphilic poly(HFMA-co-VBK)-g-PEG copolymers are determined by GPC. The chromatograms are shown in Fig. 3. The elution peaks of typical amphiphilic poly(HFMA-co-VBK)-g-PEG copolymers are relatively mono-modal and symmetric showing no evident shoulders or tails on both the lower and higher molecular weight sides.

For amphiphilic surfactants in an aqueous solution, the hydrophilic portions often submerge in water while the hydrophobic portions extend into air to reduce the surface tension. When the concentration increases to a certain point, the surface tension of the solution no longer decreases, and many micelles form. The concentration at which the surfactant forms micelles is called the critical micelle concentration (CMC) [44]. In order to determine the critical micelle concentration of amphiphilic poly(HFMA-co-VBK)-g-PEG copolymers, the surface tension of the solutions with different concentrations is measured. Fig. 4 shows a linear decrease in the surface tension with increasing concentration but it is flat at high concentrations. The critical micelle concentration determined from the intersection of the two lines is 0.108 g/L.

3.2. Synthesis and characterization of iron oxide nanoparticles and Fe3O4-encapsulated polymeric micelles

The iron oxide nanoparticles are produced by co-precipitation of Fe2+ and Fe3+ in an aqueous solution to which ammonium hydroxide is added. Oleic acid produces high affinity to iron oxide through the chemical interaction between the –COO group and Fe atoms. As a result, the hydrophobic tail of the oleic molecule points outward to generate a nonpolar shell and the oleic acid stabilized magnetic nanoparticles can dissolve in hexane. As shown in the FTIR spectrum in Fig. 2a, the vibration frequency associated with Fe–O is at 586 cm⁻¹. The peak at 1420 cm⁻¹ is due to C–H bending vibration and the broad peak between 1480 and 1760 cm⁻¹ represents the stretching vibration of C–C, C=C, and C=O bonds in the oleic acid carbon chain and carboxyl groups. The oleic acid hydrocarbon chain exhibits distinct C–H stretching at 2830–2950 cm⁻¹. All of the peaks can be assigned to oleic-acid stabilized Fe3O4 nanoparticles [45].

The transmission electron microscopy (TEM) image in Fig. 5a reveals particles with a diameter of 12 nm and a uniform distribution, although minor aggregation can be observed. This is consistent with the DLS results (Fig. 5e) that the size distribution is narrow and average size is around 15 nm. The crystal structure and morphology of the Fe3O4-encapsulated polymeric micelles is displayed in Fig. 5c. Isolated magnetite clusters consisting of several tens of densely packed monodispersed magnetite nanocrystals are found. The magnetite clusters are located in the core of the amphiphilic poly(HFMA-co-VBK)-g-PEG copolymer micelles, although the copolymers cannot be discerned by TEM due to the low contrast. In the high-magnification image (Fig. 5d), the detailed structure of the iron oxide in the micelles becomes clearer. Many magnetic nanoparticles aggregate forming small balls which can

![Fig. 6. X-Ray powder diffraction patterns: (a) Oleic acid modified Fe3O4 nanoparticles and (b) Fe3O4-encapsulated polymeric micelles.](image)

![Fig. 7. Magnetic hysteresis loops: (a) Oleic acid modified Fe3O4 nanoparticles and (b) Fe3O4-encapsulated polymeric micelles.](image)

![Fig. 8. TGA cures of oleic acid stabilized Fe3O4 nanoparticles and amphiphilic copolymers (PEG–VBK–F18.92 to PEG–VBK–F59.91).](image)
enter the hydrophobic core of the amphiphilic poly(HFMA-co-VBK)-g-PEG copolymers micelles because of the intermolecular force between oleic acid and copolymers. The hydrodynamic size of the Fe$_3$O$_4$-encapsulated polymeric micelles is also measured by DLS and the results are shown in Fig. 5f. The magnetite-loaded micelles have a diameter of 146 nm and the size distribution is quite narrow. They are stable and do not aggregate in water. The XRD pattern acquired from the Fe$_3$O$_4$-encapsulated polymeric micelles in Fig. 6b shows the same peaks as Fe$_3$O$_4$. Compared to Fig. 2b, the FTIR spectrum of the Fe$_3$O$_4$-encapsulated polymeric micelles (Fig. 2c) shows a wide absorption peak at 586 cm^{-1} suggesting the presence of Fe$_3$O$_4$. These results confirm that Fe$_3$O$_4$ nanoparticles are incorporated into the polymeric micelles and magnetite clusters with copolymer shells form during self-assembly.

3.3. Magnetic and thermal properties

To determine the magnetic property of oleic acid stabilized Fe$_3$O$_4$ and Fe$_3$O$_4$-encapsulated polymeric micelles, the magnetic properties of the powders are evaluated by vibrating sample magnetometer (VSM) at room temperature. Fig. 7 presents a typical plot of magnetization versus applied magnetic field, and the absence of the hysteresis loop confirms that both the Fe$_3$O$_4$ nanoparticles and Fe$_3$O$_4$-encapsulated polymeric micelles possess good super-magnetic properties. The saturation magnetization values (Ms) of the oleic acid-stabilized Fe$_3$O$_4$ nanoparticles and Fe$_3$O$_4$-encapsulated polymeric micelles are 18.13 emu/g and 9.61 emu/g, respectively. Loss of magnetization is due to the presence of the copolymers surrounding the magnetic cores, partial oxidation effects on the magnetic nanoparticles, and decrease in the magnetite fraction in each composite [47]. Fig. 8 shows the TGA curves of the oleic acid stabilized Fe$_3$O$_4$ nanoparticles and Fe$_3$O$_4$-encapsulated polymeric micelles fabricated with a series of copolymers of different HFMA/(PEGMA + VBK) ratios. The TGA curve of the oleic acid-stabilized Fe$_3$O$_4$ nanoparticles shows a weight loss of OA on Fe$_3$O$_4$. The total weight loss is about 19.3% in the temperature range between 160 and 450 $^\circ$C. All the Fe$_3$O$_4$-encapsulated polymeric micelles with different HFMA/(PEGMA + VBK) mass ratios exhibit two different weight losses. The first stage between 160 and 350 $^\circ$C arises from degradation of oleic acid and polyHFMA whereas the second on between 350 and 450 $^\circ$C stems from decomposition of PEG and VBK on the surface of the Fe$_3$O$_4$ nanoparticles. The Fe$_3$O$_4$ content in the different polymeric micelles calculated from the TGA results is: PEG$_e$ VBK$_e$ Fe$_{18.92}$ (17.18%), PEG$_e$ VBK$_e$ Fe$_{30.99}$ (19.47%), PEG$_e$ VBK$_e$ Fe$_{37.17}$ (26.34%), PEG$_e$ VBK$_e$ Fe$_{42.4}$ (35.71%), PEG$_e$ VBK$_e$ Fe$_{47.51}$ (15.82%), and PEG$_e$ VBK$_e$ Fe$_{59.91}$ (11.07%). The results are basically in accordance with those obtained by atomic absorption spectrophotometry shown in Table 1. Generally, the Fe$_3$O$_4$ contents calculated by TGA are slightly less than those by atomic absorption and this discrepancy may be due to oxidation, decomposition, and other effects. With increasing fluorine content in the amphiphilic poly(HFMA-co-VBK)-g-PEG copolymers, the loading efficiency of magnetic nanoparticles increases initially but

<table>
<thead>
<tr>
<th>Sample code</th>
<th>HFMA (g)</th>
<th>PEGMA (g)</th>
<th>VBK (g)</th>
<th>THF (mL)</th>
<th>AIBN (g)</th>
<th>PFMA (wt.%)</th>
<th>Encapsulation efficiencya (wt.%)</th>
<th>Encapsulation efficiencyb (wt.%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.258</td>
<td>1.004</td>
<td>0.101</td>
<td>12</td>
<td>0.068</td>
<td>18.92</td>
<td>17.18</td>
<td>17.55</td>
</tr>
<tr>
<td>2</td>
<td>0.455</td>
<td>1.005</td>
<td>0.101</td>
<td>12</td>
<td>0.068</td>
<td>30.99</td>
<td>19.47</td>
<td>19.92</td>
</tr>
<tr>
<td>3</td>
<td>0.655</td>
<td>1.005</td>
<td>0.102</td>
<td>12</td>
<td>0.068</td>
<td>37.17</td>
<td>26.34</td>
<td>26.92</td>
</tr>
<tr>
<td>4</td>
<td>0.815</td>
<td>1.005</td>
<td>0.102</td>
<td>12</td>
<td>0.068</td>
<td>42.4</td>
<td>35.71</td>
<td>36.02</td>
</tr>
<tr>
<td>5</td>
<td>1.002</td>
<td>1.004</td>
<td>0.103</td>
<td>12</td>
<td>0.068</td>
<td>47.51</td>
<td>15.82</td>
<td>16.18</td>
</tr>
<tr>
<td>6</td>
<td>1.516</td>
<td>1.004</td>
<td>0.101</td>
<td>12</td>
<td>0.068</td>
<td>50.91</td>
<td>11.07</td>
<td>11.54</td>
</tr>
</tbody>
</table>

a Encapsulation efficiency is determined by TGA.
b Encapsulation Efficiency is determined by atomic absorption spectrophotometry.

Fig. 9. Cell viability of HeLa cells treated with different concentrations of hybrid micelles.

Fig. 10. (a) T_2-weight MR images of the aqueous solution containing hybrids micelles and different iron concentrations and (b) T_2-relaxation rate ($1/T_2$) as a function of iron concentrations for the hybrid micelles.
begins to decline when the fluorine concentration reaches a certain level [48].

3.4. In vitro cytotoxicity

To evaluate the in vitro cytotoxicity of Fe$_3$O$_4$-encapsulated polymeric micelles, the MTT assay is performed on HeLa cell lines. The cells with different concentrations are incubated on the Fe$_3$O$_4$-encapsulated polymeric micelles for 24 h. As shown in Fig. 9, the cell viability is over 90% at a concentration of 800 μg/mL, suggesting good cytompatibility at this concentration. The Fe$_3$O$_4$-encapsulated polymeric micelles are thus cytocompatible up to a Fe$_3$O$_4$-encapsulated polymeric micelle concentration of 1 mg mL$^{-1}$, thus boding well for biomedical applications.

3.5. Relaxivity and in vivo MRI

Fe$_3$O$_4$ nanoparticles are good T_2 contrast agents in MRI. To investigate the efficacy of the Fe$_3$O$_4$-encapsulated polymeric micelles, the T_2-weighted images of the Fe$_3$O$_4$-encapsulated polymeric micelles for different Fe concentrations (0.015–0.16 mM/L) are acquired on a clinical 3T MRI instrument. As shown in Fig. 10a, small iron content shows a bright white T_2-weighed MR image and the MR signal declines with increasing content of Fe$_3$O$_4$-encapsulated polymeric micelles, confirming the capability of the Fe$_3$O$_4$-encapsulated polymeric micelles to enhance the transverse proton relaxation process.

Super-paramagnetic Fe$_3$O$_4$ nanoparticles are usually used as MR negative contrast agents and so the Fe$_3$O$_4$-encapsulated polymeric micelles...
micelles are evaluated based on the relaxivity parameter \(r_2 \) using an MRI scanner. The same concentration range is investigated for \(r_2 \) calculated from the slope of the concentration-dependent relaxation rate \(1/T_2 \) graphs. As shown in Fig. 10b, a good linear relationship is observed when the Fe molar concentration is plotted against \(r_2 \). According to the slope, \(r_2 \) of the Fe\(_3\)O\(_4\)-encapsulated polymeric micelles is calculated to be 157.44 mM\(^{-1}\) S\(^{-1}\), indicating that the Fe\(_3\)O\(_4\)-encapsulated polymeric micelles have negative contrast effect and can be used as an MRI negative contrast agent.

In order to evaluate the in vivo \(T_2 \)-weighted MR imaging capability, SD mice models undergo tail vein injection of the Fe\(_3\)O\(_4\)-encapsulated polymeric micelles and the MR images are acquired from the mice at scheduled time points. Before injecting the micelles, the liver is seen as the hyperintense area in the \(T_2 \)-weighted MR images. At 30 min post-injection, significant darkening can be observed from the liver area of the \(T_2 \)-weighted MR image (Fig. 11a) and this high contrast of the liver tissue persists during observation for 240 min.

Generally, magnetic nanoparticles modified by PEGs are often uptaken by the reticuloendothelial system (RES) [48], which can be used in liver and spleen MR imaging. The signal intensity change in the organs reflects iron accumulation. As shown in Fig. 11b, the liver and spleen contrast is enhanced significantly 30 min after injection of the hybrid micelles. The relative SI in the rat liver and spleen is reduced by 92.96% and 90.36% at 30 min post-injection, respectively. The high contrast of the liver and spleen persists for 4 h. It is due to the large hybrid micelles concentrations in these organs and considerable sequestration of the hybrid micelles by the macrophages of RES. On the contrary, no significant RSE change is observed from the kidney and muscle furnishing evidence that the materials do not permeate these organs.

To better understand the particle pharmacokinetics, Prussian blue staining is performed on the major organ dissections. The slides of different organs including the liver, spleen, kidney, and muscle are further examined by ex vivo Prussian blue staining extracted from the mouse immediately after in vivo MR imaging at 10 h post-injection. As shown in Fig. 12a and b, some parts of the liver and spleen are stained blue (in web version), indicating the presence or accumulation of iron oxide in these areas, but it is difficult to find blue dots in the kidney and muscles (Fig. 12c and d). The results suggest that the hybrid micelles can be used as a negative MR contrast agent for the liver and spleen.

3.6. Fluorescence and in vivo fluorescent imaging

Carbazole which emits in the blue delivers more stable fluorescence intensity and versatile structural derivatization than other dyes [49]. The carbazole segments synthesized by the Michael-type reaction are attached to the amphiphilic copolymers. Introduction of the blue emitting segments yields excellent fluorescent property making the materials suitable as an optical probe in the biological microenvironment. The concentration-dependent fluorescence emission spectra of amphiphilic poly(HFMA-co-VBK)-g-PEG copolymers in deionized water are acquired under excitation at 294 nm and two emission peaks at 350 and 365 nm are shown in Fig. 13a. As the concentration of the copolymers increases from 0.01 to 0.24 g/L, the intensity of two peaks increases, indicating that the amphiphilic poly(HFMA-co-VBK)-g-PEG copolymer at a high concentration can produce detectable signals suitable for optical imaging. The fluorescent properties of the Fe\(_3\)O\(_4\)-encapsulated polymeric micelles are also evaluated by recording the emission spectra for various concentrations. The fluorescence intensity increases initially as the concentration of Fe\(_3\)O\(_4\)-encapsulated polymeric micelles increases from 0.01 mM/L to 0.2 mM/L (Fig. 13b), but then decreases when the concentration increases further to 0.9 mM/L (Fig. 13c) resulting from fluorescence self-quenching and magnetism of Fe\(_3\)O\(_4\) [32]. Therefore,
the suitable concentration of the Fe$_3$O$_4$-encapsulated polymeric micelles for optical imaging is 0.2 mM/L.

To further assess the optical properties of the amphiphilic poly(HFMA-co-VBK)-g-PEG copolymers, the CLSM images are obtained by 2-photon (690–1040 nm) laser confocal microscopy (Carl Zeiss LSM710). The copolymers exhibit characteristic vivid blue (in web version) fluorescence derived from carbazole under 2-photon 690 nm laser irradiation (Fig. 14b), but the copolymers do not show any fluorescence under natural light (Fig. 14a). Vivid blue (in web version) fluorescence is still shown in the overlapped images obtained using the two light sources (Fig. 14c) confirming the excellent fluorescent properties.

The fluorescence intensities from several organs are monitored ex vivo to confirm accumulation of Fe$_3$O$_4$-encapsulated polymeric micelles. As shown in Fig. 15, no fluorescence is observed from the liver (Fig. 15a) and spleen (Fig. 15b) without the Fe$_3$O$_4$-encapsulated polymeric micelles. In contrast, the color map of the fluorescent image shows more details about the organ signals. Intense fluorescence is observed from the Fe$_3$O$_4$-encapsulated polymeric micelles in the liver (Fig. 15c) and spleen (Fig. 15d). The results clearly

Fig. 13. Fluorescence spectra: (a) Amphiphilic poly(HFMA-co-VBK)-g-PEG copolymers, (b and c) Hybrid micelles in water with different concentrations at room temperature excited by 294 nm.

Fig. 14. CLSM images of amphiphilic poly(HFMA-co-VBK)-g-PEG copolymers: (a), (b) Under 2-photon 690 nm laser irradiation, (c) Overlap of (a) and (b).
show accumulation of Fe₃O₄-encapsulated polymeric micelles in these organs and moreover, relatively weak fluorescence is observed from the Fe₃O₄-encapsulated polymeric micelles in the spleen compared to the liver. This phenomenon can be attributed to the stronger phagocytosis of the liver than spleen.

4. Conclusion

Stable and cytocompatible multifunctional hybrid PEGylated micelles are described. The Fe₃O₄-encapsulated polymeric micelles composed of cores containing magnetic nanoparticles as well as polyethylene glycol (PEG) shells are synthesized by self-assembly of amphiphilic poly(HFMA-co-VBK)-g-PEG copolymers and oleic acid stabilized Fe₃O₄ nanoparticles. The Fe₃O₄-encapsulated polymeric micelles have a hydrodynamic diameter of 146 nm and excellent paramagnetic properties with a maximum saturation magnetization of 9.61 emu/g and transverse relaxivity rate of 157.44 mM⁻¹ S⁻¹. They are demonstrated to be an appropriate dual-imaging probe with blue fluorescence and MR imaging for the liver and spleen. The hybrid micelles have large clinical potential in magnetic resonance imaging and optical imaging.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 51273058). This work was supported, in part, by National 973 Program of China (Grant No. 2011CB933103), Hong Kong Research Grants Council (RGC), General Research Funds CityU 112212, and City University of Hong Kong Applied Research Grant (ARG) No. 9667066.

References

Zhao Z, Zhou J, Chen M, Shi M, Feng W, Li F. Core–shell Fe3O4@PLA@Sn4YF4:Eu3+ Tm3+ co-doped NaYF4 nanophosphors for multimodality PET/MR/UCL imaging. Biomaterials 2012;33:4618–27.

