IBMM 08

Program and Abstracts

16th International Conference on Ion Beam Modification of Materials

Dresden, August 31 - September 05, 2008
Investigation of Conductive Island Growth on Polystyrene by Plasma Implantation

P. C. T. Ha1, B. K. Tay1, Paul K. Chu2, Steven Prawer3, D. R. McKenzie4

1Nanyang Technological University Nanoelectronic, Nanyang Avenue, Nanyang Singapore
2City University of Hong Kong Physics and Material Science, Kowloon Tong Hong Kong (China)
3The University of Melbourne School of Science, Melbourne Australia
4The University of Sydney Physics, Sydney Australia

As bio-electronic sensors and devices structures approach the nanometer scale, it is necessarily to recognize the electronic conducting properties. In this work, conductive Atomic Force Microscopy (c-AFM) has been used to investigate the conductivity island-like structure on polystyrene substrate. The surface morphology of titanium ions implanted polystyrene substrate and its conductivity have been simultaneously mapped. Our conducting measurements (I-V and dI/dV curve) show that the coefficient Cnx on the conductivity curve has a small finite value and Cn(1-x) is near zero for bias voltages less than 3 V. Assume that the charge carriers offered production contact area to the substrate and our I-V curve approach constant value we can conclude that our islands have a columnar structure growth mode. That is, the covered area is not increased if the film is grown by columnar structure growth. In addition, electron tunneling and conducting channel or island-like structures on polymer substrate can be a good candidate for the future of nano-plastic-electronic devices.