Committees

General Conference Chair
Susan Felch, Spansion, USA

Technical Program Chair
Amitabh Jain, Texas Instruments, USA

Publications Chair
Ed Seebauer, University of Illinois, USA

Sponsorship Chairs
Aaron Vanderpool, Intel, USA
Mitchell Taylor, Applied Materials, USA

Conference Office
AVS, 110 Yellowstone Dr., Suite 120
Chico CA 95973
Phone: 530-896-0477, Fax: 530-896-0487,
E-mail: della@avs.org,
Web: www.ii2008.com

Technical Program Committee
SungYong Bae, Hynix, China
John Chen, AIBT, USA
Paul Chu, City University, Hong Kong
Michael Current, Current Scientific, USA
Dietmar Henke, Qimonda, Germany
Dale Jacobson, SemEquip, USA
Masataka Kasa, Fujitsu, Japan
Karen Kirkby, University of Surrey, UK
Takashi Kuroi, Renesas, Japan
Larry Larson, SEMATECH, USA
Tony Renau, Varian, USA
Lenny Rubin, Axcelis, USA
Seiichi Shishiguchi, NEC, Japan
Mitchell Taylor, Applied Materials, USA

Local Organizing Committee
Michael Current, Current Scientific
Emi Ishida, Spansion
Che-Hoo Ng
Ron Eddy, Innovion
Walt Wiggins, Core Systems
Kavita Murthi, Matheson Tri-Gas
John Schuur, Innovion
Charles Evans, Consultant
Gary Mount, Evans Analytical Group
Leonard Weitman, Applied Materials
Walt Johnson, KLA-Tencor
Paul Timans, Mattson
Ray Pong, Spansion
Mike Vella, Consultant

International Committee
International Committee Chair: Kevin Jones, University of Florida, USA
Robert Brown, ATMI, USA
Michael Current, Current Scientific, USA
Joszef Gyulai, KFK Institute, Hungary
Yoshitomo Hidaka, Sumitomo Eaton Nova, Japan
Dirk Mous, High Voltage Engineering, The Netherlands
Larry Larson, SEMATECH, USA
Koji Matsuda, Nissin, Japan
Adrian Murrell, Applied Materials, UK
Tony Renau, Varian, USA
Wesley Weisanberger, Consultant, USA
Peter Rose, Epon, USA
Geoffrey Ryding, Orion, USA
Heiner Ryssel, Fraunhofer Institute, Germany
T.C. Smith, Consultant, USA
Mikio Takai, Osaka University, Japan
Anatoli Vyatkin, Russian Ministry of Science, Russia
James Stanislaus Williams, Australian National University, Australia
Andrew Wittkower, SOITEC, USA
Isao Yamada, Hyogo University, Japan
James Ziegler, U.S. Naval Academy, USA
Russell Gwilliam, University of Surrey, UK
Mitchell Taylor, Applied Materials, USA
Masataka Kasa, Fujitsu, Japan
Paul Chu, City University, Hong Kong
John Chen, AIBT, Taiwan
Lenny Rubin, Axcelis, USA
Dave Chivers, Consultant, France
Nathan Cheung, U.C. Berkeley, USA
Proliferation and Differentiation of Rat Pheochromocytoma Cells (PC12) on Copper-Implanted Quartz Glasses

Wenjun Zhanga, Wenzhan Wub, Paul K Chua, Weihua Huangb

a Department of Physics & Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
b College of Chemistry & Molecular Science, Wuhan University, China
* Presenting author: paul.chu@cityu.edu.hk

The role of patterned copper-implanted quartz glasses on PC12 cells, which constitute an extremely valuable neural model cell and undergo neural differentiation in response to neuron growth factor (NGF) stimulation, is investigated. The quartz glass samples are prepared by plasma immersion ion implantation (PIII) and the patterns are fabricated on the quartz glasses by soft lithography and chemical etching. The influence of implanted copper ions in the quartz glasses on the PC12 cells is determined. No living single PC12 cells can be found on the implanted substrate, but the cells can be found on other substrates such as poly-D-lysine coated slices and culture to proliferate and differentiate normally in the same medium. Such results indicate that the toxicity of implanted copper ions to neurons. However, the implanted copper ions should not diffuse into cell culture medium and at least the ion concentration in the medium should not be high enough to influence cell proliferation and differentiation. Hence, the influence of the patterned copper-implanted quartz glasses on PC12 cells is studied. Single living cells are observed to survive in the patterned channels on the implanted substrate and synapse with NGF added after one week of cultivation. All the synapses grow along the channels and can bifurcate according to the channel patterns to form networks. The proliferation and differentiation behavior is only observed on the patterned copper-implanted surface based on repeated experiments. Our results suggest that quartz glasses modified by PIII can render stable performance. Applications of the materials to lab-on-a-chip devices particularly neuron synapse mechanism research are thus possible.

Presenting Author: Paul K Chu (paul.chu@cityu.edu.hk)