SYMPOSIUM G
Integration of Heterogeneous Thin-Film Materials and Devices
April 23 – 24, 2003

Chairs

Harry A. Atwater
Applied Physics Department
Harvard Univ
Pierce Hall
Cambridge, MA 02138
617-496-9489

Miguel Levy
Physics Department
Michigan Technological Univ
Houghton, MI 49931
906-477-2084

Michael Current
Current Scientific
San Jose, CA 95124-1700
408-265-6192

Timothy D. Sands
School of Materials Engr
Purdue Univ
1289 MSRE Bldg
West Lafayette, IN 47907-1289
765-496-6105

Proceedings to be published in both book form and online
(see ONLINE PUBLICATIONS at www.mrs.org)
as Volume 768
of the Materials Research Society
Symposium Proceedings Series

* invited paper
with a low-doped emitter and a high Ge concentration in the base adjacent to the base-emitter junction. The resulting high injection of holes at low temperature alleviates the parasitic capacitance of the base-emitter junction and improves the performance of the device. The germanium content in the base is limited to a few percent to avoid non-radiative recombinations.

In the case of these heterojunction bipolar transistors (HBTs), the base-emitter contact is made by alloying a thin layer of silicon on the Ge layer.

The germanium concentration is typically around 10%.

To further improve the performance of these devices, it is essential to optimize the epitaxial growth process and the device fabrication techniques.

Ge is a heavily doped, high-mobility material that is well-suited for high-speed electronics applications. The use of germanium in heterojunction bipolar transistors (HBTs) allows for the fabrication of high-performance, low-power electronics.

In conclusion, the integration of germanium into silicon-based devices promises significant advancements in the field of electronics, particularly in high-performance and low-power applications.

References:

Controlled germanium content

In the case of these heterojunction bipolar transistors (HBTs), the base-emitter contact is made by alloying a thin layer of silicon on the Ge layer. The germanium concentration is typically around 10%.

To further improve the performance of these devices, it is essential to optimize the epitaxial growth process and the device fabrication techniques.

Ge is a heavily doped, high-mobility material that is well-suited for high-speed electronics applications. The use of germanium in heterojunction bipolar transistors (HBTs) allows for the fabrication of high-performance, low-power electronics.

In conclusion, the integration of germanium into silicon-based devices promises significant advancements in the field of electronics, particularly in high-performance and low-power applications.

References:

Controlled germanium content

In the case of these heterojunction bipolar transistors (HBTs), the base-emitter contact is made by alloying a thin layer of silicon on the Ge layer. The germanium concentration is typically around 10%.

To further improve the performance of these devices, it is essential to optimize the epitaxial growth process and the device fabrication techniques.

Ge is a heavily doped, high-mobility material that is well-suited for high-speed electronics applications. The use of germanium in heterojunction bipolar transistors (HBTs) allows for the fabrication of high-performance, low-power electronics.

In conclusion, the integration of germanium into silicon-based devices promises significant advancements in the field of electronics, particularly in high-performance and low-power applications.

References:

Controlled germanium content

In the case of these heterojunction bipolar transistors (HBTs), the base-emitter contact is made by alloying a thin layer of silicon on the Ge layer. The germanium concentration is typically around 10%.

To further improve the performance of these devices, it is essential to optimize the epitaxial growth process and the device fabrication techniques.

Ge is a heavily doped, high-mobility material that is well-suited for high-speed electronics applications. The use of germanium in heterojunction bipolar transistors (HBTs) allows for the fabrication of high-performance, low-power electronics.

In conclusion, the integration of germanium into silicon-based devices promises significant advancements in the field of electronics, particularly in high-performance and low-power applications.

References:

Controlled germanium content

In the case of these heterojunction bipolar transistors (HBTs), the base-emitter contact is made by alloying a thin layer of silicon on the Ge layer. The germanium concentration is typically around 10%.

To further improve the performance of these devices, it is essential to optimize the epitaxial growth process and the device fabrication techniques.

Ge is a heavily doped, high-mobility material that is well-suited for high-speed electronics applications. The use of germanium in heterojunction bipolar transistors (HBTs) allows for the fabrication of high-performance, low-power electronics.

In conclusion, the integration of germanium into silicon-based devices promises significant advancements in the field of electronics, particularly in high-performance and low-power applications.

References:

