The 8th Korea-China Symposium on Thin Film Materials

June 18-22, 2001
Pusan, Korea

Organized by
Korea Science and Engineering Foundation
Natural Science Foundation of China
Plasma Technology Center, Inha University, Korea
Korean Vacuum Society
Medium-frequency microwave plasma immersion ion implantation

Tong Hongfu, Xu Ziejit, Chen Qinhuaid, Wang Ke, Huo Yunfeng, Ma Di, and Paul K. Chu

1 Southwestern Institute of Physics, Chengdu 610041, P.R. China
2 Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong

Electron cyclotron resonance (ECR) plasma has been widely used in materials processing due to its high ionization rate and low working pressure. Recently, ECR plasma is also adopted in plasma immersion ion implantation (PIII) because of the demand of a pure plasma and high plasma density in many applications. In this paper, the novel ECR plasma immersion ion implantation device is introduced, which includes a microwave source, permanent magnet resonant cavity and sample vacuum chamber, auxiliary magnetic field system, temperature measuring system, target support, medium-frequency pulse power supply, etc. The typical argon plasma density is from 2 to 9×10^{11} cm$^{-3}$ in the resonant cavity and 2 to 5×10^{10} cm$^{-3}$ in the sample chamber. Our preliminary experimental results indicate that the medium-frequency microwave PIII is a promising way to form the gradient transition-layer for DLC coatings on Ti-6Al-4V biomaterials.