
Citation: Wai, K.-M.; Yu, P.K.N.

Application of a Machine Learning

Method for Prediction of Urban

Neighborhood-Scale Air Pollution.

Int. J. Environ. Res. Public Health 2023,

20, 2412. https://doi.org/10.3390/

ijerph20032412

Academic Editors: Tao Liu and

Yan Yan

Received: 13 December 2022

Revised: 20 January 2023

Accepted: 24 January 2023

Published: 29 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Application of a Machine Learning Method for Prediction of
Urban Neighborhood-Scale Air Pollution
Ka-Ming Wai * and Peter K. N. Yu *

Department of Physics, City University of Hong Kong, Hong Kong SAR, China
* Correspondence: bhkmwai@cityu.edu.hk (K.-M.W.); peter.yu@cityu.edu.hk (P.K.N.Y.)

Abstract: Urban air pollution has aroused growing attention due to its associated adverse health
effects. A model which could promptly predict urban air quality with considerable accuracy is,
therefore, important and will benefit the development of smart cities. However, only a computational
fluid dynamics (CFD) model could better resolve the dispersion behavior within an urban canyon
layer. A machine learning (ML) model using the Artificial Neural Network (ANN) approach was
formulated in the current study to investigate vehicle-derived airborne particulate (PM10) dispersion
within a compact high-rise-built environment. Various measured meteorological parameters and
PM10 concentrations were adopted as the model inputs to train the ANN model. A building-resolved
CFD model under the same environmental settings was also set up to compare its model performance
with the ANN model. Our results showed that the ANN model exhibited promising performance
(r = 0.82, fractional bias = 0.002) when comparing the > 1000 h PM10 measurements. When comparing
the diurnal hourly measured PM10 variations in a clear-sky day, both the ANN and CFD models
performed well (r > 0.8). The good performance of the CFD model relied on the knowledge of the
in situ diurnal traffic profile, the adoption of suitable mobile source emission factor(s) (e.g., from
MOBILE 6 and COPERT4), and the use of urban thermal and dynamical variables to capture PM10

variations in both neutral and unstable atmospheric conditions. These requirements/constraints
make it impractical for daily operation. On the contrary, the ML (ANN) model adopted here is free
from these constraints and is fast (less than 0.1% computational time relative to the CFD model).
These results demonstrate that the ANN model is a superior option for a smart city application.

Keywords: urban environment; air quality model; machine learning; ENVI-met model; smart city

1. Introduction

The epidemiologic evidence of particulate pollution-induced health effects is well
documented [1,2]. A total economic loss of USD 2.4 billion per year was estimated from
PM10-induced premature death and chronic respiratory diseases in the Pearl River Delta
of southern China [3]. Road-side vehicular emissions are the main source of atmospheric
particulates in the ambient urban air of cities that are not directly influenced by industrial
emissions [4,5]. Hong Kong, a megacity in southern China, suffers from a similar air quality
problem [6]. In view of this, a simulation model for urban air pollution, which can produce
rapid and robust results, is of urgent need for practical use. It would benefit not only Hong
Kong but also other megacities around the world. For instance, more than 50% of people
live in cities in China [7]. Technological advances in urban air quality management in the
context of simulations and monitoring are also essential for smart city development [8].

The plume dispersion in the urban canopy layer (UCL) is unique compared to that
in the free atmosphere well above the UCL. The UCL is featured with building-induced
flows, such as wake recirculation, channeling and branching in intersections. In addition,
the heterogeneity in building heights could result in the asymmetries of the vertical plume
structure and, in turn, a shift of the effective source height [9]. The Gaussian dispersion
model offers a simplified representation of downwind concentration spread from the
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emission sources. Popular models of this type, which parameterize the urban effects, are
the US EPA’s model AERMOD [10,11] and the UK’s ADMS-urban [12,13]. A CFD model is
capable of better resolving building-influenced wind and turbulence mixing in the built
environment, which governs the pollutant dispersion in the urban canopy layer, and is thus
a more accurate method. However, both the computational resource and time for a CFD
model are demanding [14–17]. In addition, atmospheric stratification, which governs the
vertical motions of fluid particles, is one of the challenges in CFD simulations. Currently,
many studies only focus on neutral flows because of their numerical simplification.

More recently, ML technique has been used in predicting regional-scale air pollution.
A few studies reported better performance for ML models in regional-scale air quality
prediction compared to conventional physiochemical numerical air quality models [18].
Various ML algorithms have been used in air pollution prediction, namely, ANN (Artificial
Neural Network; [19]), LASSO regression (Least Absolute Shrinkage and Selection Operator
regression; [20]), LSTM (Long Short-Term Memory; [21]), kNN (k-Nearest Neighbor; [22]),
RF (Random Forest; [23]), and SVM (Support Vector Machines; [24]). Bozdag et al. [19]
reported that ANN algorithm [among other algorithms (LASSO, SVR, RF, kNN)] produces
the best results (r2 = 0.58; RMSE = 20.8, MAE = 14.4) when performing a spatial prediction
of PM10 concentration in Turkey. Studies have shown that meteorological characteristics
could play an important role in the prediction of air pollutants [21,25]. Ma and Zhang [26]
commented that using some traditional algorithms, such as radical basis function, back
propagation neural network and SVM model, requires too many inputs, but the prediction
results are not in good agreement with the measurements. Nevertheless, an application of
a ML model on neighborhood-scale air pollution dispersion within the UCL of a compact
city is rarely found in the literature.

The study goal here is to investigate if a recently developed ML technique is feasible to
build a fast and relatively accurate model to predict neighborhood-scale PM10 concentration
levels in a compact-city environment. The performance of the ML model was compared
with the PM10 measurements and then with a CFD model, which is known to provide more
accurate results in predicting the PM10 levels in the UCL. Prior to the simulations, the ML
model was formulated by a dataset of past PM10 monitoring data. The CFD model was set
up with the environmental settings (e.g., building configurations) in the study area.

2. Materials and Methods

This study was conducted within a densely populated urban environment of Hong
Kong (22.30◦ N, 114.17◦ E). The study site (Figure 1) is featured with a road-side air quality
monitoring station operated by the Hong Kong Environmental Protection Department (EPD),
two major roads, and sparse vegetation, and it is surrounded by buildings with different
heights (5–26 stories). The subsequent section details the ANN and CFD models used here.
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2.1. Artificial Neural Network (ANN) Model

The ANN (an ML algorithm) model was formulated to predict the neighborhood-scale
PM10 dispersion within the UCL of the study site. The model mimics natural neurons in
animal brains. The details of the model have been discussed elsewhere, e.g., [27]. Briefly,
the ANN model consists of interconnected neurons at the input, hidden, and output layers
(Figure 2). Input values are collected in the input layer and then sent to different neurons
(or processing units), which constitute the hidden layer. Output variables are eventually
obtained at the output layer after the data are processed. Each neuron in the hidden layer
computes a weighted sum of the inputs. The weight is subjected to change during the ANN
training in order to provide its best estimate to the output. The selection of a proper number
of hidden layer is important for the model construction. Although adding more hidden
layer might improve the model’s performance, it is noted that more complexity of the
training process is imposed [28]. Therefore, one hidden layer was used here. The number of
neurons in the hidden layer was determined by Nhidden = 2 Ninput + 1, where Nhidden and
Ninput are the number of neurons in the hidden and input layers, respectively [29]. To avoid
model instability, all input parameters were scaled from 0 to 1. The feed-forward neural
network was used, which was successfully adopted in other pollution transport studies,
e.g., [30]. It is called the feed-forward network since data flow within the network from
one layer to the next one without any return path. A hyperbolic tangent sigmoid transfer
function for the neurons in the hidden layer was adopted to reduce the computational time
required during the training process. The efficient Levenberg–Marquardt algorithm for
training was used, such that the model achieved a mean squared error (MSE) < 0.004. The
model was constructed by the MATLAB software (The MathWorks, USA). Table 1 details
the model settings.

Table 1. The ANN model settings.

Parameters

Input layer

Number of neurons: 11
Background wind speed
Background wind direction
Background air temperature
Background PM10 concentration
Atmospheric pressure
Rainfall
Canyon wind speed
Canyon wind direction
Canyon air temperature
Dates of a week
Weekday/weekend

Hidden Layer Number of neurons: Nhidden = 2Ninput + 1
Output Layer Number of neurons: 1
Transfer function for hidden layer Tangent Sigmoid
Transfer function for output layer Linear

Training method
Goal: minimum MSE
Epoch: 1000 times
Algorithm: Levenberg–Marquardt

Dataset Total size: 8616
Data for training: 70%
Data for validation: 15%
Data for testing: 15%
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Figure 2. A schematic representation of the feed-forward neural network (FFNN).

2.2. Computational Fluid Dynamics (CFD) Model

The ENVI-met model (version 5.0) was used to simulate the PM10 dispersion in the
UCL of the study area. It is a 3-dimensional, microscale, non-hydrostatic computational
fluid dynamics (CFD) model and uses the RANS (Reynolds-Averaged Navier–Stokes)
equations to simulate surface–plant–air interactions. The Boussinesq approximation was
adopted for the thermal-forced vertical motion. The model description is detailed in Bruse
and Fleer [31]. It has been used to study the atmospheric dispersion of air pollutants
included in urban environments [32,33]. Particle sedimentation due to gravity and particle
deposition to different surfaces by considering the aerodynamic and sub-layer surface
resistances [34] were simulated. The simulation domain covered an area of 100 m × 100 m.
A horizontal grid resolution was set as 2 m with 6 nesting grids at each border to avoid
the edge effects. For vertical grids, the grid size varied from 20 cm in the first 1 m to a
telescoping factor of 20% after a height of 1 m above ground.

The hourly wind speed, wind direction, and air temperature measured at the EPD’s
air quality monitoring station (AQMS) were adopted as the model inputs [or the inflow
boundary condition (BC)]. The hourly measured relative humidity was obtained from a
nearby weather station. The wind speed at 10 m above ground, as required by the model,
was derived by the following power-law equation:

Uz

Ure f
=

(
z

zre f

)α

(1)

while taking a roughness length α of 0.1 [35]. The BC for PM10 was set to 0 µg m−3, since
PM10 enhancement due to traffic was modeled. Other values for the BC for PM10 were
considered not appropriate since accurate BC values from measurements are not available.
The resultant PM10 levels reported here were the CFD-predicted PM10 enhancement plus
the measured background concentrations. A 24 h simulation was preformed from 9:00 a.m.
on 30 November to 8:00 a.m. on 1 December 2009. It was about the middle testing period
of the ANN simulation performed above. A model spin-up of 6 h was used prior to the
adoption of the CFD model outputs to avoid the influence from model initialization.

Daily traffic was obtained from the annual average data reported by the government’s
Transport Department at the roads of concern in 2009 [36]. The model’s default diurnal
profile of traffic for an urban road was assumed, with peak hourly daytime traffic flow
contributing about 7%. The traffic data at the two major roads [Nathan Road (17,000 vehicles
per day) and Lai Chi Kok Road (7000 vehicles per day)] near the AQMS was input into
the model. The roads were the only major sources of PM10 concentrations measured at
the AQMS and were modeled as the line sources. The source height was 0.3 m above
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the ground. An average emission factor of 105 µg veh−1 m−1 for PM10 [37], which was
obtained from observations at different sites, was used.

The model settings are summarized in Table 2.

Table 2. The CFD model settings.

Parameters Remarks/Values 1

Meteorological conditions (wind speed,
wind direction,

relative humidity, and air temperature)
Hourly local measurements

Boundary condition for PM10
Pollution source

Source emission factor for PM10

0 µg m−3, since PM10 enhancement due to traffic
was modeled

Line sources with a height of 0.3 m above the ground
105 µg veh−1 m−1

1 See text for details.

3. Results and Discussion
3.1. Results of the ANN Model

Figure 3 shows the temporal variation in PM10 as predicted by the ANN model during
the testing period. The model demonstrates a good performance (r = 0.82, FB = 0.002,
RSME = 15.4, MAE = 11.6) and captures the diurnal cycles, the general trend from Novem-
ber to December, and some episodic levels (e.g., on 2 November and 1–4 December).
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A series of sensitive tests for the ANN model was performed to determine whether
a single input parameter or a combination of them governed the model performance.
Prior to the tests, a principal component analysis (PCA) was performed. The PCA results
showed that the first four principal components (PCs) accounted for 74% of the total
variance (Supplementary Material Table S1). One of the PCs (PC3) showed high loadings
(>0.9) with the background PM10 and the predicted PM10, suggesting a strong association
between them. The ANN model construction using only the background PM10 as the
input parameter could achieve a relatively good model performance (r = 0.77), when
compared to the observations. At this point, the result of the PCA was consistent with that
of the ANN model’s sensitive test. However, an additional sensitive test by constructing
an ANN model using in-canyon wind speed and in-canyon air temperature (essential
parameters in the CFD simulation) showed a very poor model performance with r = 0.25.
The poor performance might be attributed to the omission of the background PM10 levels.
Nevertheless, our results suggested that the ML model could perform reasonably well
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even without the knowledge of traffic data. Such simplification has a major benefit to the
practical model application in a smart city, which is discussed in the subsequent sections.

3.2. Results of CFD Model

Figure 4a shows a typical traffic-induced PM10 horizontal distribution within the
study area as predicted by the CFD model during peak hours. Higher PM10 levels near
the road sources are clearly depicted under the influence of a weak, northeasterly wind
(<0.5 ms−1). When compared to the area near Lai Chi Kok Road, the PM10 concentrations
near Nathan Road are higher because of the higher traffic flow. Specifically, in the morn-
ing of 29 November, under the influence of a weak, northerly/northeasterly wind, the
monitoring station and nearby areas were at downwind of Nathan Road (Figure 1) and,
thus, had relatively high PM10 levels (Figure 4b) due to the impact of vehicular pollution
plume. At earlier noontime, however, the decreasing PM10 levels at the monitoring station
and nearby areas were mainly due to the change in wind direction (i.e., southwesterly at
noontime) and enhanced vertical mixing with relatively clean air aloft. The CFD results
showed that the PM10 enhancements due to road traffic during nighttime were very small
at most of the areas within the domain (<2 µg m−3) because of the low traffic flow. A
detailed discussion of the pollution dispersion is not the aim of the current work. Figure 4b
shows the diurnal variation in the measured PM10 concentrations, as well as the calculated
PM10 concentrations by the CFD model and ANN model. Daytime-measured PM10 con-
centrations are higher than those at nighttime because of the lower traffic flow at nighttime.
The lower measured concentration near noontime is attributed to stronger solar heating
that promotes the vertical mixing of pollutants, given a relatively small variation in the
daytime traffic flow. In general, the CFD model performs well (Table 3) and captures
the temporal variation in the measured PM10 levels. Its good performance is likely due
to the diurnal profile of traffic assumed in the model, hourly wind speed and direction
as the input model boundary conditions, and simulated vertical mixing in the unstable
atmosphere near noontime.
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by the CFD model during peak hours. (b) Comparison of the predicted PM10 diurnal variations by
the CFD model and the ANN model. The measured data are shown as circles.
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Table 3. Summary of model performance.

Model R FB RMSE MAE

ANN 0.84 0.02 12.2 10.4
CFD 0.81 0.09 13.7 11.3

The discrepancy in the CFD results for the prediction in the evening hours (1700–1900;
Figure 4b) might be attributed to the considerable deviation in traffic flow between the
real-time situation and the model’s default profile. Except during 12:00–18:00, the CFD
model shows an under-estimation of the measurements most of the time. This under-
estimation has been reported elsewhere. Deng et al. [32] pointed out that the under-
estimation was profound, especially during days with elevated particulate levels, although
the model depicted similar temporal pattern in the measured pollution levels. For a
pollution dispersion study from a motorway, De Maerschalck et al. [38] demonstrated a
good agreement between the measurements and the modeling results for NO2, but not for
particulate levels.

While both the ANN and CFD models performed similarly in the PM10 predictions
studied above (Table 3), the computational time for the ANN model was less than 0.1% of
the CFD model. Simulating a one-day hourly PM10 variation by the ENVI-met required
more than 30 wall-clock hours in parallel processing mode for a computer with four
cores, while a ~50-day hourly PM10 simulation by the ANN model required less than
30 wall-clock minutes using the same computer. To resolve the demanding computational
resource and lengthy time required by CFD simulations, a plausible solution might be a
fast-mathematical model with simplified equations for air quality predictions. However,
it is well known that a simplified dispersion equation, such as a Gaussian-type equation,
performs poorly in dispersion calculations in complicated built environments.

One of the major limitations for the CFD model (and other conventional physiochemi-
cal models) in simulating street-canyon air quality is the requirement of real-time traffic
counting. Another limitation is that, in reality, it is very difficult to accurately obtain
vehicular emission information for all vehicles on the roads in a simulation period. For
instance, there are large uncertainties in the vehicular emissions adopted in the model when
compared with reality. Actual information, such as emission standards (from EURO-III to
EURO-VI), and additional mitigation measures (e.g., diesel particulate filter) fitted at the
tailpipe for each vehicle are very difficult (if not impossible) to obtain during routine moni-
toring. Some studies adopted a vehicular emission model (e.g., Mobile 6 and COPERT4) to
better mimic the variation in road traffic emissions and then to feed the information into an
air dispersion model, including a CFD model [39–41]. However, this kind of model requires
many inputs, such as fuel consumption, fleet configuration, trip length, distribution of
vehicle miles traveled by road types, average speed distribution by road types, annual
mileage, which are not available in many areas/countries; thus, large uncertainty in the
simulated traffic emissions and, in turn, the air quality simulations results. This poses
a challenge in using a vehicular emission model to obtain relatively accurate results for
practical use in an urban environment.

Besides that, the good performance of the CFD model is likely due to the diurnal profile
of traffic adopted and the use of hourly wind speed and direction as the model boundary
conditions. On the contrary, many research efforts available in the literature, for the purpose
of scenario simplification, adopted constant emissions and boundary conditions (e.g., for
wind), without considering unstable atmospheric conditions. It demonstrates that the
practical use of a CFD modeling technique as an air quality management tool for the urban
neighborhood-scale air pollution problem is, in general, very difficult.

4. Conclusions

In this study, the ANN approach, as an ML algorithm, was used to make PM10
predictions near road traffic emissions in the UCL. The performance of the ANN model
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was further compared with the CFD model. Both the ANN and CFD models performed
similarly when their predictions were compared with the measurements. However, the
ANN model is much faster and requires less computational resources and fewer input
parameters. The last factor might be critical in the context of air quality management
for a smart city. For instance, acquisition of accurate real-time vehicle emission factors is
difficult for CFD simulations, but traffic flow and emission factors are not required for the
ANN model simulations based on the finding of the current study. These issues have been
discussed in more details. Nevertheless, one of the strengths of the CFD model is that it
provides the spatial dynamics of urban air pollution, which is difficult to obtain with the
currently formulated ANN model.

The ANN model adopted in our study demonstrates its usefulness in air quality pre-
dictions, especially as a useful tool for smart city applications. It provides acceptable results
in both neutral and unstable atmospheric conditions, whereas additional complicated
model settings/assumptions are required for the CFD model to simulate the conditions in
an urban environment. Nevertheless, the ANN model, like other ML models, is a so-called
“black-box”, which has limited contribution to knowledge development of physical pro-
cesses and interaction of the driving mechanisms related to dispersion within urban street
canyons. This issue may need further research in future.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/ijerph20032412/s1, Table S1: Principal component analysis for the
association between input parameters.
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