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Abstract
Non-thermal plasma (NTP) has a selective killing effect on a variety of cancer cells in vivo and
in vitro, and is considered a potential tumor therapy. In this study, we found that metformin,
which has shown promising antitumor effects in previous studies, with NTP synergistically
increased cell death including apoptosis in colon cancer cell lines via reducing mitochondrial
oxidative phosphorylation and intracellular adenosine triphosphate exhausting cellular energy,
mediated through activation of AMP-activated protein kinase (AMPK). Reactive oxygen species
was revealed to modulate the activation of AMPK after NTP exposure. Considering the safety
and wide clinical use of metformin, the combination of metformin and NTP showed great
potential in cancer therapy.
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1. Introduction

Non-thermal plasma (NTP) is an ionized gas with a near room
temperature, which consists of reactive species, ions, elec-
trons, neutral particles, ultraviolet, visible light, etc. In the
past decade, owing to its notable advantages to effectively
and selectively kill various types of cancer cells and to cause
distinctly less damage to normal cells in vitro and in vivo

[1–10], treatment with NTP has been identified as a potential
technique of cancer therapy. Furthermore, there was increased
evidence that reactive oxygen species (ROS) played an import-
ant role in NTP-induced apoptosis in vitro [11–16]. In general,
NTP-induced ROS induced oxidative stress to DNA, proteins
and other cellular components, which could ultimately lead to
cell death [17].
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The incidence and mortality of colon cancer has been
increasing. Treatments on colon cancers based on surgery
supplemented with radio- and chemotherapy often show
insufficient efficacy since most patients are already at the
middle or advanced stage at the time of onset. In relation,
new therapeutic strategies such as NTP therapy are being
developed to improve the curative effect. Numerous studies
have revealed that NTP is a potential method for colon can-
cer therapy. Kim et al found that NTP induced growth arrest
and apoptosis of colon cancer cells and at the same time
reduced cell migration and invasion [18]. Madduma et al elu-
cidated that apoptosis induced by NTP in human colon cancer
cells was mediated by endoplasmic reticulum stress, mainly
through accumulating mitochondrial calcium and expressing
unfolded protein response proteins [19]. In addition, NTP
also induced immunogenic cell death in murine CT26 colon
tumors [20].

Metformin, a member of the biguanide family, is the most
commonly used oral hypoglycemic agent for the treatment
of type 2 diabetes. Apart from this, metformin can also
reduce the risk of cancers via inhibiting the growth of leuk-
emia, pancreatic, colon and hepatocellular carcinoma cells,
etc [21, 22]. Metformin directly inhibits the mitochondrial
electron transport chain complex I (ETCI) [23, 24], leading
to a decrease in ETCI activity and oxidative phosphorylation
(OXPHOS) in cells [25, 26], and the inhibition of ETCI results
in reduced proliferation of cancer cells in vitro and in vivo [27].
Consequently, metformin regulates the changes in adenosine
monophosphate (AMP)/adenosine triphoshate (ATP) ratios,
mitochondrial transmembrane potential and calcium levels,
which are correlated with increased oxidative stress by target-
ing ETCI [28].

In this study, we found that metformin with NTP syner-
gistically reduced the mitochondrial oxidative phosphoryla-
tion and intracellular ATP content in colon cancer cells and
then increased cell death via ROS-mediated AMP-activated
protein kinase activation. These results hinted the potential
application of metformin in the NTP cancer therapy.

2. Methods

2.1. Cell culture and reagents

Three human colon cancer cell lines (RKO, SW480 and
HCT116) were purchased from the ATCC (Manassas, VA,
USA) and were cultured in DMEM (Dulbecco’s modified
eagle’s medium; Gibco, Carlsbad, CA, USA) supplemented
with 10% fetal bovine serum (Gibco, Carlsbad, CA, USA)
and 100 U ml−1 penicillin-streptomycin (Gibco, Carlsbad,
CA, USA). All cell cultures were maintained in 5% CO2 and
humidified air at 37 ◦C. Metformin was added at 12 h prior to
NTP treatment.

Metformin was obtained from Sigma-Aldrich. (St.
Louis, MO, USA). Primary antibodies for poly (ADP-
ribose) polymerase (PARP), Caspase 3, Caspase 9, AMPK,
phosphorylated-AMPK (Thr-172), and β-actin were pur-
chased from Cell Signaling Technology (Beverly, MA, USA).
Secondary IRDye-labeled goat anti-mouse and anti-rabbit

IgG antibodies were purchased from LI-COR Biosciences
(LI-COR, Lincoln, NE, USA).

2.2. Non-thermal dielectric barrier discharge plasma
treatment

Non-thermal dielectric barrier discharge (DBD) plasma was
employed in the present work, and the experimental setup was
described in detail in our previous studies [29]. Briefly, the
device mainly consisted of three parts: plasma reaction cham-
ber, high voltage power supply and gas source. The plasma
reaction chamber consisted of four high voltage electrodes,
each of which consisted of a copper column with a diameter
of 32 mm. A quartz glass (1 mm thickness) was placed under
the copper column as an insulating layer, and four copper
columns (37 mm in diameter) were used as the negative elec-
trode. There were five air inlets above the reaction chamber
and one air outlet on the side, and helium (purity: 99.99%,
120 l h−1 flow rate) was used as the working gas and injec-
ted 5 min before the treatment to expel air out of the reac-
tion chamber. Cells were exposed to NTP for 0–120 s, and the
discharge gap between medium surface and the bottom of the
quartz glass was 5 mm. The voltage was 12 kV (peak to peak)
at a frequency of 24 kHz, and the discharge power density was
0.9 W cm−2.

2.3. Cell viability detection

The cells were seeded with a density of 3 × 105 cells per
35 mm dish in triplicates, and then returned into the incub-
ator for the adherence on the dish surface one night before
the treatment of metformin. At 12 h after metformin treat-
ment, the cells were exposed to NTP without changing the
culture medium. At 24 h after NTP exposure, the cell viability
was detected with CCK-8 kit (Cell Counting Kit-8; Beyotime,
Shanghai, China) following the manufacturer’s instructions
and the absorbance was measured at 450 nm with Varioskan
Flash microplate reader (Thermo Fisher Scientific, Rockford,
IL, USA). The results are expressed as percentage (%) cell
viability compared to control.

2.4. Apoptosis detection

After treatment, harvested the cells and washed twice with
cold PBS, and suspended with 1 × Annexin V binding buf-
fer (500 µl), then stained with Annexin V-FITC and PI from
the Apoptosis Detection Kit I (BD Biosciences, Bedford,
MA, USA). The apoptosis was detected with a flow cyto-
meter (FACS Calibur, Becton-Dickinson) and analyzed with
the FACS suite software.

2.5. ATP measurement

The cellular ATP was detected with the ATP assay kit (Solar-
bio, Beijing, China) according to the manufacturer’s instruc-
tion. The luminescence was measured with an Illuminometer
(Promega Corporation, Fitchburg,WI, USA). The results were
plotted as fold changes from control samples.
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2.6. Measurement of oxygen consumption rate (OCR) and
extracellular acidification rate (ECAR)

The OCR and the ECAR were measured with Seahorse XF24
Analyzer (Seahorse Bioscience, North Billerica, MA, USA).
Briefly, when metformin was used alone, 3 × 104 cells were
plated in the 24-well microplate specifically designed for
XF24 Analyzer and then metformin was added with a final
concentration of 6 mM after cell attachment. The treatment
with metformin maintained for 12 h in an incubator until OCR
and ECAR were measured.

As regards the combination of metformin and NTP, 3× 105

cells were plated in 35 mm dishes and treated with metformin
in the same manner but the cells were treated with NTP (30 s)
at 12 h after metformin treatment and trypsinized immedi-
ately, then plated into the XF24 microplate with the original
culture medium in. After 12 h incubation, OCR and ECAR
were measured. The plate was washed twice with XF medium
(OCR: supplemented with glucose, glutamine, and sodium
pyruvate; ECAR: glutamine only) and then returned to incub-
ator for 1 h. Sequential injections were performed with differ-
ent compounds (OCR: oligomycin, FCCP, rotenone+ antimy-
cin A; ECAR: D-glucose, oligomycin, and 2-deoxyglucose).
Normalization was performed by measuring the protein con-
tent in each well and the data were analyzed with the Seahorse
Wave software.

2.7. Measurement of mitochondrial membrane potential
(MMP)

The cellular MMP was measured with the Mito Probe JC-1
assay kit (Beyotime, Shanghai, China) according to manufac-
turer’s instruction. Briefly, the cells were stained with JC-1
(5 g ml−1) for 20 min at 37 ◦C in dark, washed twice with
PBS and resuspended in fresh medium without serum and
then detected with flow cytometer (FACS Calibur, Becton-
Dickinson).

2.8. Western blot

Briefly, the cells were harvested, washed twice with cold PBS
and lysed with RIPA lysis buffer (Beyotime, Shanghai, China).
The lysate was then centrifuged at 12 000 × g for 10 min at
4 ◦C and the supernatants were collected. The protein concen-
tration was determined with BCA Protein Assay Reagent Kit
(Beyotime, Shanghai, China). Equivalent amounts of protein
were separated with 8%–12% SDS-PAGE and transferred to
polyvinylidene difluoride membrane (Millipore Corporation,
Bedford, MA, USA). The membranes were then blocked with
5% non-fat milk powder, incubated with special primary anti-
bodies overnight at 4 ◦C, and labeled with IRDye-conjugated
secondary antibodies for 1 h at room temperature. Finally,
the membranes were measured with Odyssey-CLx (LI-COR,
USA).

2.9. Detection of superoxide anion

To detect the cellular superoxide anion, the cells were stained
with its specific fluorescent probe, dihydroethidium (DHE,

5 µM, Molecular Probes) for 1 h in the dark, and then photo-
graphed with a fluorescence microscope (Leica DMI 40 008,
Germany) or quantified with flow cytometer (FACS Calibur,
Becton-Dickinson).

2.10. siRNA transfection

The si-RNA target sequences of AMPK were: RNAi#1,
5′-CGGGAUCAGUUAGCAACUATT-3′; RNAi#2, 5′-
GGUUGGCAAACAUGAAUUG-3′. Briefly, cells seeded in
35 mm dishes (50%–60% confluency) were transfected with
Lipofectamine 2000 (Invitrogen, Grand Island, NY, USA)
according to manufacturer’s instruction, and the transfection
mix (siRNA and lipofectamine 2000 diluted in Opti-MEM)
was then added to the culture media gently. After 48 h incub-
ation, the cells were harvested for further experiments.

2.11. Statistical analysis

All experiments were repeated at least three times and data
were expressed as mean ± standard deviation (S.D.). Differ-
ences between the results of two groups were calculated with
the student’s t-test and p < 0.05 was considered statistically
significant.

3. Results

3.1. Metformin with NTP synergistically increases cell death

As shown in figure 1(A), NTP exposure reduced cell viabil-
ity distinctly in RKO, SW480 and HCT116 cells in a dose-
dependent manner. In subsequent experiments, the exposure
time of 30 s was chosen as a representative dose for NTP treat-
ment. The treatment with metformin alone only decreased the
cell viability of RKO, SW480 and HCT116 slightly. How-
ever, after NTP exposure (30 s), the groups with metformin
pretreatment significantly reduced the cell viability in all
three cell lines when compared to the groups treated with
metformin or NTP alone. (figure 1(B)). These results indic-
ate that metformin with NTP synergistically increased cell
death.

3.2. Metformin with NTP increases apoptosis synergistically

As an early event of apoptosis [30], the change of MMP was
detected with the JC-1 detection kit. Results in figure 2(A)
showed that, after NTP exposure, the percentage of MMP
changes in RKO and SW480 cells with metformin treatment
(6 mM) were significantly higher than those treated with met-
formin or NTP alone. This result indicates that metformin
combined with NTP significantly prompted the depolarization
of mitochondrial membrane potential.

Moreover, upon NTP exposure, the apoptosis rate of RKO
and SW480 cells with metformin pretreatment (6 mM) was
also significantly higher than those treated with metformin or
NTP alone (figure 2(B)). A similar trend was found in the
expression of PARP, Caspase 9 and Caspase 3 (figure 2(C)).
Taken together, metformin with NTP synergistically increased
apoptosis.
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Figure 1. Metformin with NTP synergistically enhances cell death. (A) Cell viability of RKO, SW480 and HCT116 cells. (B) Cell viability
of RKO, SW480 and HCT116 cells (metformin: 6 mM; NTP: 30 s). The significance was compared with control NTP group. (∗ p < 0.05, ∗∗

p < 0.01, ∗∗∗ p < 0.001).

Figure 2. Metformin with NTP synergistically induces apoptosis. (A) MMP of RKO and SW480 cells. (B) Apoptosis of RKO and SW480
cells. (C) Expression level of PARP, caspase-3 and caspase-9. (∗ p < 0.01, ∗∗ p < 0.001).
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Figure 3. Metformin with NTP synergistically reduces mitochondrial oxidative phosphorylation and intracellular ATP level. (A) OCR and
(B) ECAR with or without metformin (6 mM) pretreatment after NTP exposure (30 s). (C) Cellular ATP levels in RKO cell line. (∗ p < 0.05,
∗∗ p < 0.01, ∗∗∗ p < 0.001.)

3.3. Metformin with NTP synergistically reduces
mitochondrial oxidative phosphorylation and intracellular ATP
level in colon cancer cells

Since metformin has been reported to have an inhibition
effect on mitochondrial respiratory chain complex, we further
measured the bioenergetic profiles with Seahorse analyzer.
The results in figures S1(A) and S1(B) (available online at
stacks.iop.org/JPhysD/53/385203/mmedia) showed that met-
formin treatment decreasedOCR and increased ECAR inRKO
cells, which demonstrated a reduced oxidative phosphoryla-
tion and a metabolic shift towards glycolysis. After treatment
with metformin and NTP, the RKO cells showed significantly
decreased levels of maximum respiration and proton leak-
age compared to those treated with metformin or NTP alone
(figure 3(A)), the basal respiration also reduced without sig-
nificant difference to the group treated with metformin only.
These results indicated that the combination treatment pro-
moted the inhibition of the mitochondria energy metabolism.
Similarly, the combination treatment also increased glycolysis
in cells (figure 3(B)), which indicated that the basal glycolysis
rate and maximum glycolysis rate of the cells were prompted.
These results suggested that mitochondrial electron transfer
and aerobic oxidation process were blocked, and the required
energy could only be obtained through anaerobic respiration,
which produced far less ATP than aerobic respiration. Coin-
cidently, the ATP level in RKO and SW480 cells treated with
metformin and NTP was distinctly lower than those treated
withmetformin or NTP only (figure 3(C), figure S1(C)). Taken
together, it could be concluded that metformin with NTP syn-
ergistically reduced mitochondrial oxidative phosphorylation
and intracellular ATP consumption in colon cancer cells.

3.4. Activation of AMPK mediates the synergistic effect of
metformin and NTP

Since the ratio of intracellular AMP concentration to
ADP concentration ([AMP]: [ADP]) and the ratio ADP

concentration to ATP concentration ([ADP]: [ATP]) regu-
late AMP kinase (AMPK) -thr172 phosphorylation [31], we
further investigated the activation of AMPK. The results in
figure 4(A) showed that the combination treatment increased
the level of p-AMPK in both RKO and SW480 cells, which
suggested that the combined treatment prompted the activation
of AMPK. To further confirm the role of AMPK, the special
siRNA was used to knock down the expression of AMPK.
The negative control group were treated with NC-siRNA. The
transfection efficiency was confirmed with western blotting.
The transient transfection with the siRNAs led to a significant
decrease in the AMPK expression (figure 4(B)) and phos-
phorylation (figure 4(C)). Knocking down AMPK attenuated
cell death (figure 4(D)) and apoptosis (figure 4(E)) in RKO
cells after the combined treatment. These results indicated
that the activation of AMPK mediated the synergistic effect
of metformin and NTP in the inhibitory effect of metformin
and NTP.

3.5. ROS initiates the activation of AMPK

It was known that ROS could directly regulate AMPK activ-
ation and then induced apoptosis [32, 33], so production of
intracellular superoxide anion, an important kind of ROS, was
measured with its specific fluorescent probe DHE. The results
in figures 5(A) and (B) showed that the production of super-
oxide anion in cells treated with metformin and NTP was sig-
nificantly higher than those treated with metformin or NTP
alone. To further investigate the role of the superoxide anion,
N-acetyl-L-cysteine (NAC), a scavenger of ROS, was added
4 h before NTP treatment. Through treatment with NAC, the
viability of RKO cells was distinctly higher than those without
NAC treatment (figure 5(C)). Moreover, activation of AMPK
induced by the combination of metformin and NTP was inhib-
ited by NAC treatment (figure 5(D)). Furthermore, this phe-
nomenon was also reflected in the detection of cell apoptosis
(figure 5(E)). These results indicated that activation of AMPK
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Figure 4. Activation of AMPK mediates the synergistic effect of metformin and NTP. (A) Expression of p-AMPK and AMPK. (B) Effect
of knocking down AMPK with siRNA. (C) Phosphorylation of AMPK, (D) cell viability and (E) apoptosis after metformin/NTP treatment.
(∗ p < 0.01, ∗∗ p < 0.001.)

was initiated by the production of ROS induced by metformin
and NTP.

4. Discussion

As a promising anti-cancer therapeutic method, NTP induces
growth arrest and cell death in various types of cancer cells.
Different sensitivities to NTP exposure have been observed
in different cancer cells, and researchers have also tried to
sensitize the resistant cells to NTP with chemicals or nan-
oparticles [32–34]. In the present study, we showed that
metformin with NTP synergistically effectively killed three
human colon cancer cell lines, namely, RKO, SW480 and
HCT116.

Apoptosis is a kind of programmed cell death, and its
primary role is to maintain homeostasis in multicellular organ-
isms [35–37]. Apoptosis has been reported in the literature
to play an important role in NTP-induced cell death. For
example, NTP can induce damages to DNA and other biolo-
gical molecules, which then lead to apoptosis [38, 39]. Our
results showed that metformin combined with NTP signific-
antly prompted the depolarization of mitochondrial membrane
potential and the ratio of apoptotic cells.

A plenty of studies have shown that metformin exhib-
its anti-tumor effects. Clinical studies revealed that patients
with type 2 diabetes treated with metformin had signific-
antly reduced cancer incidence rate compared to those patients

treated with other drugs [40, 41]. A research on patients
with endometrial cancer also showed a remarkable correla-
tion between metformin intake and increased recurrence-free
survival and overall survival rates [42]. Studies on possible
mechanisms revealed that metformin reduced the systemic
insulin level and insulin-like growth factor-1 (IGF-1) to inhibit
the growth of insulin-dependent tumor cells by inhibiting hep-
atic gluconeogenesis or by reducing oxidative phosphoryla-
tion and other metabolic activities of tumor cells [21, 43].
Our results showed that metformin could also reduce oxidat-
ive phosphorylation and enhance glycolysis in colon cancer
cells, while aerobic respiration in the cells was further reduced
and glycolysis was further increased after the combined treat-
ment of metformin and NTP, indicating a further reduction
in the energy supply. Coincidently, Zhuang et al found met-
formin inhibited oxidative phosphorylation and increased gly-
colysis in an AMPK dependent manner in breast cancer cell
lines [44]. Furthermore, Julie et al also found that metformin
decreased oxygen consumption and mitochondrial-dependent
ATP production, and increased glycolytic ATP and lactate
production [45].

AMPK, an important downstream target gene of met-
formin [46], is a low energy checkpoint and a classic meta-
bolic regulator [47]. When hypoxia or nutrient deprivation
occurs, intracellular ATP levels decreases and AMP levels
increases, leading to conformational changes in AMPK het-
erotrimer and phosphorylation of the amino subunit threon-
ine at 172, leading to activation of AMPK [48]. A series
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Figure 5. ROS initiates the activation of AMPK. (A) Intracellular ROS level. (B) Cell viability. (C) Protein level of AMPK/p-AMPK. (D)
Apoptosis. (∗ p < 0.05, ∗∗ p < 0.01)

of studies revealed the pro-apoptotic effect of AMPK via
inhibiting the degradation of p53, up-regulating the expres-
sion of Bim, inhibiting the activity of mTOR and increas-
ing the level of ROS [49, 50]. Furthermore, activation of
AMPK with its agonists has also been used to initiate apop-
tosis in tumor cells [51–53]. In the present study, we were
interested in the involvement of activation of AMPK in the
synergistic effect of metformin and NTP. An increased ratio
of p-AMPK/AMPK was observed in the groups treated with
metformin and NTP, indicating enhanced activation of AMPK
when compared to those treated with metformin or NTP only.
Upon knocking down with specific siRNA of AMPK, the
activation of AMPK and the killing effect including apoptosis
prompted by the combination of metformin and NTPwere sig-
nificantly attenuated, indicating the important role of AMPK
activation.

ROS, a well-known initiator of apoptosis, has also been
reported to be induced by the continuous activation of AMPK
and lead to apoptosis [54–56]. In this study, we found produc-
tion of ROS in cells treated with metformin plus NTP was sig-
nificantly higher than that in cells treated with metformin or
NTP only. With NAC treatment, the prompted killing effect
including apoptosis occurrence and AMPK activation was
attenuated significantly, indicating the involvement of ROS-
AMPK.

In conclusion, our study showed that metformin with NTP
synergistically killed the colon cancer cells via the axis of

ROS-AMPK. Considering the extensive clinical use and safety
ofmetformin, we hope our research contributes to an improved
therapeutic effect.
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