LOCAL URBAN CLIMATE MODELLING IN THE TROPICS

Yasemin Didem AKTAS1, Jenny STOCKER2, David CARRUTHERS2, Julian HUNT3

1 UCL Civil, Environmental and Geomatic Engineering
2 Cambridge Environmental Research Consultants (CERC)
3 UCL Earth Sciences
No. of Disasters in Kuala Lumpur (2000 – August 2015)

- Floods and Flash Floods
- Haze
- Strong Winds
- Landslides

IPCC 2014 (AR5): The First Step in Adaptation to Future Climate Change – Reduce Vulnerability and Exposure to Present Climate Variability
Disaster Resilient Cities:
Forecasting Local Level Climate Extremes and Physical Hazards for Kuala Lumpur

• **10 organisations from Malaysia**
 5 **Research Organisations:** Universiti Kebangsaan Malaysia, SEADPRI-UKM; University of Malaya, UM; Meteorology Department of Malaysia, MetMsia; Minerals and Geoscience Department of Malaysia, JMG; Department of Environment Malaysia, DoE

• **6 organisations from the UK:**
 3 **Research Organisations:** University of Cambridge, UoC; British Geological Survey, BGS; University College London, UCL
 3 **Business Partners:** Cambridge Environmental Research Consultants, CERC, Cuesta Consulting and JBA
PHASE 1:
METEOROLOGICAL FORECASTING

METEOROLOGICAL PARAMETERS
- Precipitation
- Temperature
- Humidity
- Wind Speed

PHASE 2:
HAZARDS MODELLING

GEOPHYSICAL HAZARDS
- Flash floods & floods
- Landslides
- Sink-holes

ATMOSPHERIC HAZARDS
- Strong winds
- Urban heat
- Air pollution

PHASE 3:
MULTI-HAZARD FORECASTS

MULTI-HAZARD PLATFORM
Platform for managing and communicating risks in a changing climate

MANAGEMENT, CAPACITY BUILDING AND OUTREACH
URBAN MICRO-CLIMATE

• Building materials with larger sensible heat storage
• Increased anthropogenic heat (traffic, A/C etc.)
• Reduced latent heat flux (less evapotranspiration)
• Less open spaces and green areas
 • More short-wave radiation trapped within narrow streets
 • Less wind*

HENCE WARMER AND MORE PARTICLE/POLLUTANT INTENSIVE

BUILT UP vs GREEN AREAS: Mid-latitudes

Case Study: LONDON
Mostly concrete, low-rise, sparsely built-up central area (Olympic parkland)
Surrounded by low-rise, compact, residential area, and Lee Valley Park to the north

Green areas are coolest with up to 9°C of difference compared to built-up core of the modelling domain!

*Aktas, Stocker, Carruthers, Hunt (2017) A sensitivity study relating to neighbourhood-scale fast local urban climate modelling within the built environment, forthcoming
BUILT UP vs GREEN AREAS: the Tropics

“Apparent temperature is a construct intended to reflect the physiological experience of combined exposure to humidity and temperature and thereby better capture the response on health than temperature alone”

(Wichmann, Andersen, Ketzel, Ellermann & Loft (2011) Apparent Temperature and Cause-Specific Emergency Hospital Admissions in Great Copenhagen, Denmark, PLoS ONE 7, e22904)

ANTHROPOGENIC HEAT SOURCES: the Tropics

• In the high-rise and dense, compact cities, anthropogenic impact govern the UHI.

• Waste heat from A/C systems
 • High A/C use in the tropics

• Fuel use from traffic generates heat
 • Traffic congestion in all urban areas; larger reliance on personal vehicles in tropical urban areas.

• Low wind speed in the tropics amplifies impact of anthropogenic heat sources
 • ∇T↑

Case Study: LONDON

Temperature increment due to anthropogenic heat sources: 18th August, ambient rural temperatures ~ $24^\circ C$ & upwind rural wind speed ~ 0.5 m/s
Other critical factors intrinsic to tropical Asian megacities

- **Size and population**
 - ~1900 km²
 - 243 km²

- **Low wind speed**

- **Increased precipitation**
 - During or right after precipitation events, the relationship between near surface temperatures and land use disappear*

- **Soil saturation is important and need to be considered in modelling.**

Change in the calculated temperature values by up to 1.6 degrees when wind speeds are halved!
MITIGATION – urban morphology and street canyon geometry

MORPHOLOGICAL PROPERTIES ADVANTAGEOUS FOR URBAN HEATING ARE DEPENDENT ON LOCAL CLIMATE REGIME

• $W/H \uparrow$ $UHI \uparrow$ large radiation input (no shading) – case study: LECCE

• $W/H \downarrow$ $UHI \uparrow$ for the hot and humid tropical areas as lack of openness results in stagnation

 Oke, T R (1978) Boundary Layer Climates
MITIGATION – high vs low thermal admittance materials

CONCRETE (high thermal admittance) vs MASONRY (low thermal admittance)

Case Study: LONDON

MITIGATION – cool/green roofs

<table>
<thead>
<tr>
<th>Largest temperature perturbation (°C)</th>
<th>Green</th>
<th>Green Dry</th>
<th>Cool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cloudy days</td>
<td>-0.96</td>
<td>-0.34</td>
<td>-0.58</td>
</tr>
<tr>
<td>Partly cloudy days</td>
<td>-1.01</td>
<td>-0.38</td>
<td>-1.0</td>
</tr>
<tr>
<td>Clear-sky days</td>
<td>-1.05</td>
<td>-0.38</td>
<td>-1.27</td>
</tr>
<tr>
<td>Period of largest perturbation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloudy days</td>
<td>18:15–23:15</td>
<td>21:00–24:00</td>
<td>09:15–13:45</td>
</tr>
<tr>
<td>Partly cloudy days</td>
<td>19:00–21:00</td>
<td>21:00–01:00</td>
<td>08:30–13:00</td>
</tr>
<tr>
<td>Clear-sky days</td>
<td>19:45–24:00</td>
<td>24:00–03:00</td>
<td>09:00–11:00</td>
</tr>
<tr>
<td>Mean daily perturbation (°C)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloudy days</td>
<td>-0.45</td>
<td>-0.14</td>
<td>-0.2</td>
</tr>
<tr>
<td>Partly cloudy days</td>
<td>-0.49</td>
<td>-0.15</td>
<td>-0.33</td>
</tr>
<tr>
<td>Clear-sky days</td>
<td>-0.48</td>
<td>-0.16</td>
<td>-0.44</td>
</tr>
</tbody>
</table>

MITIGATION – sustainable building/urban design

- Locally available material (preferably high heat capacity material, such as wood), local building knowledge readily available within the community.

- Window openings oriented to make the most out of winds and breezes. Other openings that will facilitate air flow within and around the building, enhanced by fans if needed to avoid stagnation.

- Use of shade by external elements such as trees or overhanging eaves (a veranda?).

- Buildings placed not too close to each other, creating large aspect ratio street canyons, for ventilation.

- **Building materials with high albedo, low surface resistance to evaporation, cool or green roofs.**

- **High heat capacity materials.**

- **Insulation designed so as to minimize cooling demand to avoid waste heat emissions from AC systems.**

- **Scatter of small scale green areas and water bodies through the cityscape?**

USE RESOURCES EFFICIENTLY, PRIORITISE, TRADE OFF, ACCOMMODATE DIVERSE NEEDS
Future modelling

- Modelling tools can assess mitigation options

<table>
<thead>
<tr>
<th>Example scenarios</th>
<th>Anthropogenic heat emissions scenarios</th>
<th>Building materials scenarios</th>
<th>Land use & building density scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual and reduced values for W/m² or converted from CO₂ emissions for road</td>
<td>Different thermal admittance values to assess heat storage (including insulation)</td>
<td>Alter the urban morphology to assess impact on the wind and turbulence field, and hence temperatures</td>
</tr>
<tr>
<td></td>
<td>Actual and reduced values for estimated waste heat from AC systems</td>
<td>Different albedo values to assess re-radiation (green walls/roofs, cool roofs)</td>
<td>Effect of the green areas on the overall urban temperatures, as well as on human wellbeing</td>
</tr>
</tbody>
</table>
Thanks for listening!
y.aktas@ucl.ac.uk

Disaster Resilient Cities:
Forecasting Local Level Climate Extremes and Physical Hazards for Kuala Lumpur