Intelligent Railway Traffic Management

Prof. Dr.-Ing. Ingo A. Hansen
13-7-2017
Content

1. Traffic management process
2. Monitoring and centralized control centres
3. Traffic management drawbacks, goals and means
4. Automatic Route conflict detection
5. Intelligent rescheduling
6. Running time prediction in case of delays
7. Integrated micro-macro approach to robust railway timetabling
8. EU funded research project ON-TIME
9. Conclusions
Traffic management process

1. Monitoring and information
 - Infrastructure
 - Train operations and crews
 - Passengers
 - Freight
2. Detection and analysis of irregularities, failures and accidents
3. Development, evaluation and selection of dispatching measures
 - track occupation & clearance, signals, switches
 - train #/location/speed, arrival/depart. times
 - volumes, flows, behaviour, safety
 - weight, (temperature), security
 - train delay start/end times/locations, conflicts
 - failure classification, MTBF, MTTR
 - accident #/location, causes and severity
 - type and impact assessment of dispatching measures
 - conflict resolution, rescheduling
Monitoring system

Function
• Registration of the amount and cause of increased delays
 • between two successive scheduled events (arrival, departure, passage)

Working
• Receive and store train delays
• Compute delay jumps
• Display train events with delay jump of 3 min or more to signalmen
• Signalmen add cause and responsible party using a classification tree
• Approval by responsible party, verification, authorization

Drawbacks
• Train delays are updated when passing at station signals
 - cause of a delay is (much) earlier, past information no more available
• Delays-to-be-explained pile up during disrupted operations
 - main task of signalman: route setting and informing train drivers
 - registration follows after a hectic period
 - Information from driver calls in case of incidents often unclear
• Subjectivity: signalman may be the cause of delays, biased opinion
Traffic control screens DB
Online train graphs Deutsche Bahn

Train category and number
Past time
Actual time line
Prediction
Delay [min]

Track layout
Centralized Traffic Control

- Traditional evaluation of operational situation
 - Based on data collected and displayed on track layout
 - In dispatcher’s mind based on expert knowledge
 - Static time-distance diagrams

- Computer support
 - Visualisation of current train positions by train describers in interlocking areas
 - Automatic route setting (ARS) based on train describers
 - Dynamic time-distance diagrams (historical and future train paths)

- Intelligent decision support needed
 - Automatic traffic state prediction and train conflict detection
 - (Semi-)automatic route conflict resolution
Current rescheduling practice

Basic rules applied:
1. If there is a route conflict between trains running to the same track, the planned order is maintained;
2. If there is a route conflict between trains running to different tracks, the train that has claimed its route first, will go first (FCFS);
3. When trains are outside a predefined time-window (usually 3 or 5 minutes) the dispatcher may act according to his knowledge, experience and a list of what-if scenarios.
Current traffic management drawbacks

- Computer support often limited to graphical interfaces and automatic route setting systems;
- Dispatchers usually do not have precise information of the future evolution of train traffic and the chosen actions may be suboptimal;
- The delay propagation is unpredictable by traffic controllers, especially in case of complex rail networks, high density traffic, severe disturbances;
- Traffic controllers/dispatchers act reactively and not proactively;
- Predetermined rules/disruption programs do not consider actual situation.
Essential requirements for railway perturbation management

- Actual train position, travel direction and speed
- Train weight and braking rate
- Dynamic train occupancy (number of passengers)
- Dynamic platform track occupation and scheduled train connections
- Reliable prediction of headway and route conflicts
- Accurate prediction of running times and delays (advisory speed)
- Train circulation and crew rotation plans
- Impact assessment of dispatching measures
Automatic conflict detection tool (TU Delft): Blocking time diagram

Red blocks: ⇒ Route conflict
Intelligent Rescheduling (1)

- **Essentials**
 1. Conflict free timetable
 2. Real-time data communication
 - infrastructure use (signals, track occupation/clearance, route setup/release) and
 - train operation (length, position, speed, delay, accel./braking, weight)
 3. Automatic headway and route conflict detection/resolution
 4. On-line decision support for traffic controllers/dispatching
 5. Dynamic advisory speeds

- **Conflict resolution measures**
 1. Retiming (holding, extension of running time)
 2. Reordering (relocation/provision of passing stops for overtaking)
 3. Rerouting (alternative local routes and alternative lines)
 4. Cancelling trains
Intelligent Rescheduling (2)

• Objectives
 ➢ Minimize overall train delays
 ➢ Minimize weighted delays (trains, passengers)
 ➢ Minimize maximum train delay
 ➢ Minimize total knock-on train delays
 ➢ Minimize delay survival period
 ➢ Ensure maximum number of line connections
 ➢ Maintain maximum circulation plans of rolling stock and crews
 ➢ Minimize number of extra train services in case of disruption

• Priority rules
 1. Emergency trains
 2. Premium (high-speed) passenger trains
 3. Long-distance (Intercity) trains
 4. Premium freight trains
 5. Express regional trains
 6. Regional trains
 7. Other freight trains
Intelligent Rescheduling (3)

Performance depends on
- Amount/increase of measured/expected train delay
- Cause of primary (and consecutive) delay and disruption
- Location where the event or delay happened
- Time of the day
- Passengers involved
- Traffic intensity and density
- Rerouting alternatives.

Traffic management policy
- **Event driven**
- **Time driven**
- **Hybrid**

Complexity
- Network topology
- Time restriction/urgency
- Accuracy of model
- Computational effort
Feedforward traffic management information

- **Dispatcher support**
 - Generation of rescheduling options
 - Fast performance evaluation of rescheduling measures
 - Prediction of incident duration and fading-out time
 - Selection of adapted schedule (timetable, rolling stock, crews)
 - Prediction of running, arrival and departure times
 - (Semi-)automatic conflict resolution

- **Driver support**
 - Holding, advisory train speed
 - Adaptation of train circulation and crews rooster

- **Customer support**
 - Update of arrival/departure/transfer information
Running time prediction in case of delays
Percentiles of process times are computed based on historical data:
- Sum of running times over route segments (outbound route – open track block sections – inbound route)
- Dwell times
- Headway times between similar train pairs at conflict points
- Transfer connection times between same trains

Running and dwell times are updated every 10 – 30 s based on actual train positions and delays.

Simple model can be extended by clustering historical data and classifying train runs according to:
- Time of day
- Rolling-stock type
- Weather
- Delay
Change of signal aspects and track occupation/clearance times explain train movements

A. Following

B. Merging

C. Crossing
Validation of short-term prediction model (Kecman, 2014)

- Determination of the prediction time horizon (e.g. 20 (30) min.)
- Randomly selected 50% of available track occupation data used for calculation of arc weights
- Other 50% of empirical data used for model validation such that event times later than time horizon are computed
- Running order of trains in first instance as scheduled (input)
- Delay propagation algorithm runs backward in time through predecessor events
- Intermediate scheduled departure times used as constraints
Shortcomings of microscopic simulation models for real-time rescheduling

- Offline input data processing from signalling and safety systems
- Difficult tuning of rolling stock dynamics, especially concerning accurate train acceleration, distance, speed changes and braking
- Difficult network synchronization of simulation run output (train positions, speeds, knock-on delays); intractable for large networks
- Offline (multiple) simulation of train movements and delay propagation per corridor at high computation speed (>1/60)
- Complex impact assessment of simulation output for (alternative) rescheduling measures

hybrid/integrated (micro-macro transformation) models necessary!
Integrated micro–macro approach to robust railway timetabling (Besinovic et al. 2016)

Micro to macro
- Select timetabling points (stations/junctions)
- Aggregate running and dwell times
- Exploit given running time supplements
- IP node packing model to find feasible and robust timetable at network scale
- Objectives: Minimize travel times/train cancellations/extended transfer times/delay propagation

Macro back to micro
- Generate operational speed profiles
- Estimate track capacity consumption
- Detect/remove headway conflicts
EU funded research project
ON-TIME 2011-2014 (outline)

• Research team

• Deliverables

❖ WP 3 Development of robust and resilient timetables

❖ WP 4 Methods for real-time management of operations

❖ WP 6 Driving Advisory System

❖ WP 7 Demonstration simulation of real-time traffic management

http://www.ontime-project.eu
ON-TIME: From Science to Practice
Different test cases around Europe

East Coast Main Line (UK)
- Sandy
- Bishop's Stortford
- Bishops Stortford
- Hitchin
- Stevenage
- Luton
- Dunstable
- Milton Keynes
- Aylesbury
- London
- King's Cross

Utrecht-Eindhoven Nijmegen-Tilburg (NL)
- Hertford North
- Bayford
- Crews Hill
- Gordon Hill
- Enfield Chase
- Orange Park
- Winchmore Hill
- Palmers Green
- Wood Green North Jn
- Alexandra Palace
- Harringay
- Timpson Park
- Drayton Park
- Highgate
- Highbury & Islington
- Essex Road
- Old Street

Iron Ore line (SE)
- Abisko
- Kruuna
- Rätsi
- Skapavallen
- Kaskullstull
- Gällivare
- Border
- Luleå

→ Real-time video
ON-TIME: From Science to Practice
Demonstration
Conclusions (1)

Offline traffic analysis tool based on train describer records for improving timetable quality and efficiency

- Statistical analysis of train diagram variation (performance bandwidth)
- Automatic estimation of realized arrival and departure delays at stations with accuracy ≈ 5 seconds
- Automatic recognition of historical route conflict locations and probabilities
- Distinct analysis of hindered/unhindered train running time and primary/consecutive delay distributions
- Tuning of scheduled running time allowance and buffer times
Conclusions (2)

Online decision support implementation

- Open track train position and actual train speed monitoring
- Automatic computation and visualization of headways, blocking times and (consecutive) train delays in case of conflicts
- Accurate train running time and dwell time information
- Computation and communication of advisory train speed to drivers
- Alleviation of traffic controllers’ work from routine work (Automatic Train Regulation)
- Impact assessment of proactive conflict resolution measures in case of incidents/disruptions
- Reliable prediction of arrival/departure/transfer connection delays for passengers
Literature

- Daamen, W., Goverde, R.M.P., Hansen, I.A. (2009), Non-discriminatory Automatic Registration of Knock-On Train Delays, *Networks and Spatial Economics, 9*(1), 47-61
- Hansen, I.A. (2009), Introduction, Guest editorial Special Issue on Railway Network Optimization, *Networks and Spatial Economics, 9*(1), 1-5
EU funded research project
ON-TIME 2011-2014

• Research team

• Deliverables
 ❖ WP 3 Development of robust and resilient timetables
 ❖ WP 4 Methods for real-time management of operations
 ❖ WP 6 Driving Advisory System
 ❖ WP 7 Demonstration simulation of real-time traffic management

http://www.ontime-project.eu
ON-TIME: From Science to Practice
Different test cases around Europe

East Coast Main Line (UK)
- Stevenage
- Luton
- Watton-at-Stone
- Ashwell & Morden
- Baldock
- Letchworth
- Cambridge
- Cambridge Jn
- Hertford
- Hertford North
- Bayford
- Cuffley
- Crews Hill
- Gordon Hill
- Enfield Chase
- Orange Park
- Winchmore Hill
- Palmers Green
- Wood Green North Jn
- Alexandra Palace
- Harringey
- Finsbury Park
- Tottenham
- Drayton Park
- Highbury & Islington
- Essex Road
- Old Street
- London
- King's Cross

Utrecht-Eindhoven
Nijmegen-Tilburg (NL)

Iron Ore line (SE)

Real-time video

TU Delft
ON-TIME: From Science to Practice

Human Machine Interface

- Developed by Ansaldo STS
- Enables optimal resolution of route conflicts subject to infrastructure, safety, rolling stock and human constraints
- Interaction with disruption handling of railway undertaking
Results from the ON-TIME project

- The project ON-TIME has developed algorithms and tools for robust timetabling and real-time traffic management support into practice
- An open-loop strategy already improves train operations’ performance
- A closed-loop control strongly increase traffic resilience especially for shorter rescheduling intervals and longer prediction horizons
- Simulation tests prove the effectiveness of automatic real-time rescheduling on railway traffic performance in case of disturbance
- Tests over railway networks in different countries proved the applicability of the concept into real life

http://www.ontime-project.eu
Appendix: Classification of railway (re)scheduling approaches

Macroscopic models
- A. Time-distance diagram (linear)
- B. Mathematical programming
- C. Blocking-time diagram

Microscopic models
- 1. Graphical
- 2. Analytical
- 3. Simulation

Deterministic
- Line
- Station

Stochastic
- Network
(Re-)scheduling decision support models

- **Macroscopic models**
 - Mathematical scheduling optimisation models (PESP)
 - Linear programming (Liebchen, 2006)
 - Constraint propagation (Kroon et al. 2008)
 - Timed Event Graph (PETER; Goverde, 2007, 2010)
 - Alternative Graph (aggregated; Kecman et al., 2012)

- **Microscopic models**
 - Asynchronous simulation (Gröger, 2004, Jacobs, 2008)
 - Synchronous simulation (RailSys, OpenTrack)
 - Constraint propagation (Rodriguez, 2007)
 - Alternative Graph (ROMA; D’Ariano, 2008; Corman, 2010)
 - Resource-Tree Conflict Graph (Caimi et al., 2011)

- **Micro-macro transformation models** (Schlechte et al., 2011; Besinovic et al., 2016)