Cancer-Cell-Specific Mitochondria-Targeted Drug Delivery by Dual-Ligand-Functionalized Nanodiamonds Circumvent Drug Resistance

Miu Shan Chan, Hoi Man, Leung, and Pik Kwan Lo*

*aDepartment of Biology and Chemistry, b Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, cDepartment of Chemistry and Institute of Molecular Functional Materials Hong Kong Baptist University Kowloon Tong, Hong Kong; (miushchan-2@my.cityu.edu.hk, hoimleung7-c@my.cityu.edu.hk and peggylo@cityu.edu.hk)

Abstract

The application of nanodiamond is rapidly expanded from diagnosis to treatment due to its promising drug loading and non-photoquenching imaging properties. However, the delivery of sufficient drug amount to the targeted disease site is greatly importance in therapeutics. Hence, we developed a cancer-cell-specific sub-cellular organelle-targeted delivery based on photostable nanodiamond (ND), which is functionalized with folic acid and mitochondrial localizing sequence (MLS) peptides. This dual-ligand-functionalized ND platform does not only distinguish the cancer cells via the overexpression of folate receptors on cell membrane, it also localizes to mitochondria. Importantly, the doxorubicin (DOX) loaded dual-ligand-functionalized ND platform induces a significant cytotoxicity in drug resistance cancer cell (MCF-7/ADR) comparing to the free doxorubicin localized in lysosomes because the localization in mitochondria enhances the retention time of DOX inside the MCF-7/ADR, which has the significant circumvention of P-glycoprotein to pump out the drug inside the cell. This work successfully demonstrates nanodiamond-based nanocarriers for cancer-cell- specific mitochondria-targeted delivery and overcomes drug resistance in doxorubicin-resistant human breast adenocarcinoma cancer cells.

Reference
