Measurements of atmospheric 7Be properties using high-efficiency gamma spectroscopy

K.N. Yu*, L.Y.L. Lee

Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong

Received 18 April 2002; received in revised form 6 June 2002; accepted 25 July 2002

Abstract

Two 7Be-related properties have been measured using a high-efficiency germanium gamma spectrometer (relative efficiency of 90%), namely, the activity median aerodynamic diameter (AMAD) of 7Be-associated atmospheric aerosols and the airborne 7Be radioactivity. With time resolutions of about 1–3d correlations between these 7Be-related properties and different meteorological parameters were identified. We found that AMAD is anti-correlated to 7Be counts. It is correlated with the relative humidity (RH) and mean cloud cover with high confidence, but not with temperature. We also found that 7Be radioactivity was correlated with the RH with a moderate confidence, but not with the mean cloud cover or temperature. Furthermore, wet precipitation present in the middle of the sampling period decreased the 7Be activity and increased the AMAD, while wet precipitation before or at the beginning of the sampling period decreased both 7Be activity and AMAD. Finally, after a cold front passed by, the AMAD decreased and the 7Be activity increased. Possible explanations are also given.

Keywords: 7Be; Cosmogenic radionuclide; Meteorology; Gamma spectroscopy

1. Introduction

Natural 7Be is formed by cosmic-ray spallation of nitrogen and oxygen in the atmosphere and can reach the ground level through vertical mixing in the troposphere. It has a half-life of 53.3d or equivalently an average lifetime of 77d, and has been employed to study aerosol transit and residence times in the troposphere (Martell, 1970; Papastefanou and Ioannidou, 1995). Atmospheric aerosol particles in general follow a trimodal distribution including (a) the Aitken nuclei mode (from 0.003 to 0.07 μm, average 0.015 μm), (b) the accumulation mode (from 0.07 to 2 μm, average 0.3 μm), and (c) the coarse mode (from 2 to 36 μm, average > 10 μm) (NRC, 1979). However, 7Be associates mainly with the accumulation mode aerosols (Papastefanou and Ioannidou, 1995). After attachment, the transportation and deposition characteristics of 7Be become those of the aerosol particles, so 7Be is a good tracer for the characteristics of the accumulation mode aerosols.

Two 7Be properties are studied in the present work. The first property is the activity median aerodynamic diameter (AMAD) derived from the aerodynamic size distribution of 7Be-associated atmospheric aerosols. From the AMAD, the residence time of the aerosols can also be determined. The second property is the airborne 7Be radioactivity. It is noted that, in the literature, there are many more studies on 7Be concentrations (e.g., Papastefanou et al., 1995; Talpos and Cuculeanu, 1997; Todorovic et al., 1999; Al-Azmi et al., 2001; Aldahan et al., 2001; El-Hussein et al., 2001) than on 7Be size distribution (Papastefanou and Ioannidou, 1995; Winkler et al., 1998).

The first objective of the present work is to develop a fast method of measuring the above two 7Be properties, aiming at a time resolution of 1d by using a high-efficiency germanium gamma spectrometer (relative
efficiency of 90%). Time resolutions for previous studies on ^{7}Be size distribution were of the order of 7 d (Papastefanou and Ioannidou, 1995) to 10 d (Winkler et al., 1998). The second objective is to study the correlation between these two ^{7}Be properties. With such time resolutions, the third objective is to identify correlations between ^{7}Be properties and different meteorological parameters. The meteorological parameters studied in the present work included the relative humidity (RH), mean cloud cover and temperature. Changes in the ^{7}Be properties with wet precipitation and the traversal of a cold front over Hong Kong are also investigated.

2. Methodology

2.1. Air sampling

Hong Kong (22°18'N, 114°10'E) is a coastal city. The samples were collected 20 m above the ground on the roof of the Academic Building of the City University of Hong Kong. The samplings took place from late November to early March. This period mainly covers the winter and early spring seasons in Hong Kong, in which occasional rains and cold fronts can be encountered and wider ranges of RH and temperature can be expected.

The aerodynamic size distribution of ^{7}Be-associated with atmospheric aerosols was obtained using Sierra’s Series 230 cascade impactors (Anderson 2000, Inc., Atlanta, GA, USA), which involved a flow rate of 68 m3h$^{-1}$ (or 40 ft3min$^{-1}$) and five atmospheric pressure stages for collecting aerosols larger than 0.49 μm. The effective cutoff diameters of these impactors were 0.49, 0.95, 1.5, 3 and 7.2 μm. Specially slotted glass-fibre filters were used to collect the aerosols on these stages. Another glass-fibre filter (without slots) used as a back up filter was used to collect all aerosol particles with diameters below 0.49 μm. Deposition of the particles in the glass-fiber lattice improves particle retention and reduces possible re-entrainment.

We use sampling durations of exactly or very close to integral numbers of days in order to eliminate possible artifacts due to different sampling times. However, we also explored the sampling duration of 23 h, which paves the way for continuous daily sampling in the future, if necessary. The remaining 1 h is required for collection and reload of the filter papers.

After collection, the glass fibre filters (with or without slots) were folded and wrapped around the inner vertical surface of a 4 l Marinelli beaker, so that all filter papers will have the same irradiation geometry to the germanium detector.

2.2. Gamma-ray spectrometer and calibration

The ^{7}Be activities were measured using the gamma peak at 477 keV. The detector used was the EG&G ORTEC GMX90240 photon detector spectrometer system (EG&G ORTEC, 100 Midland Rd, Oak Ridge, TN 37831-0895). The type of cryostat configuration was Pop Top. The detector was an n-type coaxial high purity germanium crystal of 75.4 mm × 91.1 mm with a relative efficiency of 90%; this has a resolution of 2.18 keV at 1.33 MeV. The detector is placed inside a lead shield of 52 cm × 63.8 cm and 12 cm thickness. The ORTEC gamma vision for Windows A66-B32 version 5.1 software was used to control the data acquisition and storage as well as the sample analysis and calibration.

2.3. AMAD and residence time of ^{7}Be-associated aerosols

The aerosol-attached ^{7}Be activity is approximated by a log-normal distribution. The AMAD and the geometric standard deviation (GSD) were conveniently determined by plotting the cumulative distributions on a piece of log-normal probability paper. In such a cumulative plot, the x-axis gives the logarithm of the aerodynamic diameter (D_p) while the y-axis (in probit scale) indicates the cumulated percentage of ^{7}Be activity (out of the total sum of ^{7}Be activities on all stages) less than D_p.

If we plot the inverse of a cumulative Gaussian distribution (expressed as probabilities in percentages)
using a linear y scale, we will get a sigmoidally shaped curve. Changing the y scale to a (nonlinear) probability scale (ranging from 0.0001 to 99.999) can change the curve to appear as a straight line. The probit scale is similar to the probability scale, except that the scale is linear and the increment between tick marks is one standard deviation. The value “5” on the probit scale refers to the mean or 50% cumulative probability, while “6” refers to one standard deviation above the mean or 84.1% cumulative probability. A typical plot of the cumulated percentage of 7Be activity versus the aerodynamic diameter (D_p), in probit and log scales, respectively, is shown in Fig. 1. Hence, the AMAD is obtained by the D_p value corresponding to the probit value of 5, and the GSD by the ratio of D_p values corresponding to probit values of 6 and 5.

After obtaining the AMAD for a particular sample, the residence time t_R can be estimated (Papastefanou and Ioannidou, 1995) by dividing the increase of the AMAD over the average size of the Aitken nuclei mode (i.e., 0.015 μm) by the mean growth rate of 0.004–0.005 μm h⁻¹ (McMurray and Wilson, 1982).

3. Results and discussion

The results have been shown in Table 1. In the table, the sampling period, sampling duration, AMAD, GSD, corrected 7Be counts, average temperature, RH and mean cloud cover are shown.

There were a total of 14 samplings: the first four sampled for 23 h, the fifth for 72 h, and the rest nine for 48 h. The 2nd–4th data were obtained from continuous daily samplings, and the collection and reload of the filter papers were carried out during the 1 h period from 9 to 10 a.m. each day. The success of using a 23 h sampling period has made possible future continuous daily sampling.

The mean residence times for our samples were calculated to be 3.2–11.8 d (using a mean growth rate of 0.004 μm h⁻¹) or 2.6–9.4 d (using a mean growth rate of 0.005 μm h⁻¹). Using the same method based on 7Be measurements, Papastefanou and Ioannidou (1995) calculated the mean residence time of 7.4–8.9 d. On the other hand, Papastefanou and Bondietti (1991) reported a mean residence time of 8 d for atmospheric aerosols in the boundary layer, as inferred from 210Bi/210Pb activity ratios.

3.1. Correlation between AMAD and 7Be activity

The relationship between AMAD and the corrected total 7Be counts is shown in Fig. 2. All the 7Be counts have been corrected to a sampling time of 48 h. A negative relationship can be clearly observed between the two variables. Regression analysis shows the correlation coefficient between AMAD and the corrected total count to be -0.61, and the significance of the regression is given by $p < 0.03$ (F test). Therefore, AMAD is anti-correlated to 7Be counts with high confidence.

As 7Be is formed mainly in the stratosphere and also partly in the upper troposphere, we can expect that air coming from the upper troposphere or the stratosphere has enhanced 7Be levels, and the corresponding time allowed for the AMAD to grow is relatively short. Feely

<table>
<thead>
<tr>
<th>Sampling period</th>
<th>Sampling duration (h)</th>
<th>AMAD (μm)</th>
<th>GSD</th>
<th>Corrected counts</th>
<th>RH (%)</th>
<th>Mean cloud cover (%)</th>
<th>Average temp (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>26/11/01(10:00)–27/11/01 (09:00)</td>
<td>23</td>
<td>0.76</td>
<td>5.6</td>
<td>250</td>
<td>64.2</td>
<td>19.1</td>
<td>20.8</td>
</tr>
<tr>
<td>29/11/01(10:00)–30/11/01 (09:00)</td>
<td>23</td>
<td>0.67</td>
<td>2.1</td>
<td>445</td>
<td>87.1</td>
<td>73.0</td>
<td>22.4</td>
</tr>
<tr>
<td>30/11/01(10:00)–1/12/01 (09:00)</td>
<td>23</td>
<td>0.68</td>
<td>2.5</td>
<td>392</td>
<td>77.9</td>
<td>61.5</td>
<td>21.6</td>
</tr>
<tr>
<td>1/12/01 (10:00)–2/12/01 (09:00)</td>
<td>23</td>
<td>0.79</td>
<td>3.4</td>
<td>230</td>
<td>81.5</td>
<td>75.5</td>
<td>22.5</td>
</tr>
<tr>
<td>11/1/02 (09:41)–14/1/02 (09:41)</td>
<td>72</td>
<td>0.74</td>
<td>1.8</td>
<td>607</td>
<td>80.1</td>
<td>70.9</td>
<td>20.7</td>
</tr>
<tr>
<td>15/1/02 (09:35)–17/1/02 (09:35)</td>
<td>48</td>
<td>0.51</td>
<td>2.6</td>
<td>431</td>
<td>89.6</td>
<td>66.8</td>
<td>20.6</td>
</tr>
<tr>
<td>20/1/02 (11:30)–22/1/02 (11:30)</td>
<td>48</td>
<td>0.48</td>
<td>2.3</td>
<td>531</td>
<td>62.0</td>
<td>37.0</td>
<td>13.4</td>
</tr>
<tr>
<td>1/2/02 (16:00)–3/2/02 (16:00)</td>
<td>48</td>
<td>0.60</td>
<td>2.1</td>
<td>454</td>
<td>74.1</td>
<td>87.7</td>
<td>14.0</td>
</tr>
<tr>
<td>4/2/02 (10:00)–6/2/02 (10:00)</td>
<td>48</td>
<td>1.15</td>
<td>1.9</td>
<td>356</td>
<td>80.6</td>
<td>91.9</td>
<td>16.2</td>
</tr>
<tr>
<td>18/2/02 (10:00)–20/2/02 (10:00)</td>
<td>48</td>
<td>0.55</td>
<td>2.0</td>
<td>616</td>
<td>71.9</td>
<td>47.9</td>
<td>18.7</td>
</tr>
<tr>
<td>23/2/02 (10:00)–25/2/02 (10:00)</td>
<td>48</td>
<td>0.71</td>
<td>2.0</td>
<td>543</td>
<td>82.2</td>
<td>67.6</td>
<td>19.9</td>
</tr>
<tr>
<td>27/2/02 (10:00)–1/3/02 (10:00)</td>
<td>48</td>
<td>0.75</td>
<td>2.3</td>
<td>596</td>
<td>83.8</td>
<td>67.3</td>
<td>21.7</td>
</tr>
<tr>
<td>4/3/02 (10:00)–6/3/02 (10:00)</td>
<td>48</td>
<td>0.60</td>
<td>3.0</td>
<td>514</td>
<td>71.1</td>
<td>69.6</td>
<td>20.0</td>
</tr>
<tr>
<td>6/3/02 (11:00)–8/3/02 (11:00)</td>
<td>48</td>
<td>0.33</td>
<td>2.5</td>
<td>868</td>
<td>50.9</td>
<td>41.4</td>
<td>18.5</td>
</tr>
</tbody>
</table>
etal. (1989) also pointed out that downward transfer of ^7Be in the troposphere is a factor controlling variations of ^7Be radioactivities in the surface air. Therefore, for stronger vertical mixing in the troposphere, higher ^7Be levels and smaller AMAD values measured at the ground level are expected. Winkler et al. (1998) also observed relatively low AMAD values during the period of high ^7Be air concentrations.

3.2. Correlation between ^7Be properties and RH and cloud cover

Regression analysis shows the correlation coefficient between AMAD and the RH to be 0.50, and the significance of the regression is given by $p < 0.08$ (F test). Therefore, AMAD is correlated with the RH with high confidence. Shifts to large particle sizes were also observed for increased RH (Röbig et al., 1980). On the other hand, regression analysis shows the correlation coefficient between ^7Be counts and the RH to be -0.43, and the significance of the regression is given by $p < 0.13$ (F test). Therefore, ^7Be count is correlated with the RH with a moderate confidence. During high RH conditions, condensation becomes more intense, resulting in increased wet scavenging rate of aerosols and thus of ^7Be atoms attached to these sources (Gerasopoulos et al., 2001).

A similar relationship between AMAD and mean cloud cover has been found. The correlation coefficient is 0.49 and the significance of the regression is given by $p < 0.08$ (F test). This can be similarly explained by shifts to large particle sizes when the aerosols pass through the clouds. However, the correlation coefficient between ^7Be counts and the mean cloud cover is only -0.17, and the significance of the regression is given by $p < 0.56$ (F test). Therefore, ^7Be count is not correlated with the mean cloud cover, and therefore the in-cloud wet scavenging does not eliminate the ^7Be attached aerosols.

3.3. Correlation between ^7Be properties and temperature

The final studied meteorological parameter is the temperature. The correlation coefficients between AMAD and ^7Be counts with the temperature are 0.13 and -0.19, respectively, while the corresponding significance are given by p less than 0.66 and 0.52, respectively. Therefore, it can be concluded that temperature does not affect the AMAD or the ^7Be counts, at least in our temperature range of 13–23°C.

3.4. Correlation between ^7Be properties and wet precipitation

In our data, two sampling periods had wet precipitation, namely, 1/2/02–3/2/02, and 4/2/02–6/2/02. Rain fell in the middle of these two sampling periods, namely, 2.6 mm on 2 February 2002 and 1.9 mm on 5 February 2002. There was another sampling period, 15/1/02–17/1/02, which had wet precipitation immediately before and at the beginning of the period, namely 1.7 mm on 14 January 2002 and 1 mm on 15 January 2002.

The ^7Be properties seem to be very different for these two different scenarios. If the wet precipitation occurs in the middle of the sampling period, the total ^7Be activity decreases while the AMAD increases. For example, the total ^7Be activity decreases from 454 to 356 counts while the AMAD increases from 0.60 to 1.15 µm from the period 1/2/02–3/2/02 to the period 4/2/02–6/2/02. The decrease in the ^7Be activity can be due to wet scavenging, while the increase in the AMAD is due to a shift to large particle size during rainfall (Röbig et al., 1980).

On the other hand, however, for the wet precipitation which occurs before or at the beginning of the sampling period, most particles, which had grown in size during rainfall, will not be sampled due to wet scavenging. Therefore, both ^7Be activity and the AMAD will decrease. This is the case for the period 15/1/02–17/1/02, for which the ^7Be activity has decreased from 607 to 432 counts and the AMAD from 0.74 to 0.51 µm, when compared to the values for the previous sampling period.

However, these changes in AMAD and ^7Be activity can also be explained by the different RH values. In order to discuss clearly the effects of wet precipitation in the future, more data for various meteorological conditions are needed.

3.5. Correlation between ^7Be properties and cold fronts

The data for the periods 20/1/02–22/1/02 and 6/3/02–8/3/02 were obtained immediately after a cold front had
passed Hong Kong. It can be seen that the AMAD values are relatively smaller than the values when the cold front was approaching or had just arrived. At the same time, the total 7Be counts were also relatively higher after a cold front had passed by. These can be explained by the enhanced tropospheric mixing forced by the cold front systems, which is more efficient than the spontaneous convective mixing. Under such forced mixing, aerosol particles associated with freshly formed 7Be can reach the ground level more easily so the airborne 7Be activity will increase. The AMAD will also be smaller due to shorter residence time. Gerasopoulos et al. (2001) also observed that anticyclonic conditions favoured downward mixing of 7Be. Sometimes the tropopause actually folds down just behind a cold front, and the subsided stratospheric air will bring along an enhanced 7Be activity.

However, again, these changes in AMAD and 7Be activity can also be explained by the different RH values. In order to discuss clearly the effects of rainfall and cold fronts in the future, more data for various meteorological conditions are needed.

4. Conclusions

(1) Two 7Be-related properties have been measured using a high-efficiency germanium gamma spectrometer (relative efficiency of 90%), namely, the AMAD of 7Be-associated atmospheric aerosols, and the airborne 7Be radioactivity.

(2) We have been successful in using a 23 h sampling period to measure the above two 7Be-related properties, which has made possible future continuous daily sampling. Time resolutions for previous studies of residence time using 7Be were of the order of 7–10 d.

(3) The mean residence times for our samples were calculated to be 3.2–11.8 d (using a mean growth rate of 0.004 μm h$^{-1}$) or 2.6–9.4 d (using a mean growth rate of 0.005 μm h$^{-1}$).

(4) AMAD is anti-correlated to 7Be counts with high confidence.

(5) AMAD is correlated with the RH with high confidence, while 7Be radioactivity is correlated with the RH with a moderate confidence.

(6) AMAD is correlated with the mean cloud cover with high confidence, while 7Be radioactivity is not correlated with the mean cloud cover.

(7) Temperature does not affect the AMAD or the 7Be counts, at least in our temperature range of 13–23°C.

(8) Wet precipitation in the middle of the sampling period decreases the 7Be activity and increases the AMAD, while wet precipitation before or at the beginning of the sampling period decreases both 7Be activity and AMAD. After a cold front has passed by, the AMAD decreases and the 7Be activity increases. However, these changes in AMAD and 7Be activity can also be explained by the different RH values. In order to discuss clearly the effects of rainfall and cold fronts in the future, more data for various meteorological conditions are needed.

References

